若一個(gè)矩形的長(zhǎng)為
4
3
12
cm,寬為2
3
cm,則與它面積相等的正方形的邊長(zhǎng)為
 
cm.
分析:先求出長(zhǎng)方形的面積,再根據(jù)正方形的面積公式即可求得其邊長(zhǎng).
解答:解:長(zhǎng)為
4
3
12
cm,寬為2
3
cm的矩形的面積是
4
3
12
×2
3
=16cm2,
所以正方形的面積是16cm2,所以這個(gè)正方形的邊長(zhǎng)為
16
=4cm.
故答案為:4.
點(diǎn)評(píng):本題主要考查了二次根式的應(yīng)用,熟悉正方形的面積計(jì)算公式,即邊長(zhǎng)乘邊長(zhǎng)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將矩形OABC放置在平面直角坐標(biāo)系中,點(diǎn)D在邊0C上,點(diǎn)E在邊OA上,把矩形沿直線DE翻折,使點(diǎn)O落在邊AB上的點(diǎn)F處,且tan∠BFD=
43
.若線段OA的長(zhǎng)是一元二次方程x2-7x-8=0的一個(gè)根,又2AB=30A.請(qǐng)解答下列問題:
(1)求點(diǎn)B、F的坐標(biāo);
(2)求直線ED的解析式:
(3)在直線ED、FD上是否存在點(diǎn)M、N,使以點(diǎn)C、D、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)已知a、b、c分別是△ABC的∠A、∠B、∠C的對(duì)邊(c>b),關(guān)于x的方程x2-2(b+c)x+2bc+a2=0有兩個(gè)相等的實(shí)數(shù)根,且∠B、∠C滿足關(guān)系式
3
sin∠B=sin∠C
,△ABC的外接圓面積為64π.
(1)求a,b,c的長(zhǎng).
(2)若D、E、F分別為AB、BC、AC的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),PQ∥AC,且交BC于點(diǎn)Q,以PQ為一邊向點(diǎn)B的異側(cè)作正三角形PQH,設(shè)正三角形PQH與矩形EDAF的公共部分的面積為S,BP的長(zhǎng)為
3
x.直接寫出S與x之間的關(guān)系.
(3)在(2)的情況下,當(dāng)x=4
3
時(shí),求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書 九年級(jí)數(shù)學(xué) 上 (江蘇版課標(biāo)本) 江蘇版課標(biāo)本 題型:044

矩形倉(cāng)庫(kù)的多種設(shè)計(jì)方案

  實(shí)踐與探索課上,老師布置了這樣一道題:

  有100米長(zhǎng)的籬笆材料,想圍成一矩形露天倉(cāng)庫(kù),要求面積不小于600平方米,在場(chǎng)地的北面有一堵長(zhǎng)50米的舊墻.有人用這個(gè)籬笆圍一個(gè)長(zhǎng)40米,寬10米的矩形倉(cāng)庫(kù),但面積只有400平方米,不合要求.現(xiàn)在請(qǐng)你設(shè)計(jì)矩形倉(cāng)庫(kù)的長(zhǎng)和寬,使它符合要求.

  經(jīng)過同學(xué)們一天的實(shí)踐與思考,老師收到了如下幾種設(shè)計(jì)方案:

  (1)如果設(shè)矩形的寬為x米,則用于長(zhǎng)的籬笆為=(50-x)米,這時(shí)面積S=x(50-x).

  當(dāng)S=600時(shí),由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  檢驗(yàn)后知x=20符合要求.

  (2)根據(jù)在周長(zhǎng)相等的條件下,正方形面積大于矩形面積,所以設(shè)計(jì)成正方形倉(cāng)庫(kù),它的邊長(zhǎng)為x米,則4x=100,x=25.這時(shí)面積達(dá)到625米,當(dāng)然符合要求.

  (3)如果利用場(chǎng)地北面的那堵舊墻,取矩形的長(zhǎng)與舊墻平行,設(shè)與墻垂直的矩形一邊長(zhǎng)為x米,則另一邊為100-2x,如圖.

  因?yàn)榕f墻長(zhǎng)50米,所以100-2x≤50.即x≥25米.若S=600平方米,則由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根據(jù)x≥25,舍去x2=25-

  所以,利用舊墻,取矩形垂直于舊墻一邊長(zhǎng)為25+米(約43米),另一邊長(zhǎng)約14米,符合要求.

  (4)如果充分利用北面舊墻,即矩形一邊是50米舊墻時(shí),用100米籬笆圍成矩形倉(cāng)庫(kù),則矩形另一邊長(zhǎng)為25米,這時(shí)矩形面積為S=50×25=1250(平方米).即面積可達(dá)1250平方米,符合設(shè)計(jì)要求.

還可以有其他一些符合要求的設(shè)計(jì)方案.請(qǐng)你試試看.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書九年級(jí)數(shù)學(xué)上 題型:044

矩形倉(cāng)庫(kù)的多種設(shè)計(jì)方案

  實(shí)踐與探索課上,老師布置了這樣一道題:

  有100米長(zhǎng)的籬笆材料,想圍成一矩形露天倉(cāng)庫(kù),要求面積不小于600平方米,在場(chǎng)地的北面有一堵長(zhǎng)50米的舊墻.有人用這個(gè)籬笆圍一個(gè)長(zhǎng)40米,寬10米的矩形倉(cāng)庫(kù),但面積只有400平方米,不合要求.現(xiàn)在請(qǐng)你設(shè)計(jì)矩形倉(cāng)庫(kù)的長(zhǎng)和寬,使它符合要求.

  經(jīng)過同學(xué)們一天的實(shí)踐與思考,老師收到了如下幾種設(shè)計(jì)方案:

  (1)如果設(shè)矩形的寬為x米,則用于長(zhǎng)的籬笆為=(50-x)米,這時(shí)面積S=x(50-x)

  當(dāng)S=600時(shí),由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  檢驗(yàn)后知x=20符合要求.

  (2)根據(jù)在周長(zhǎng)相等的條件下,正方形面積大于矩形面積,所以設(shè)計(jì)成正方形倉(cāng)庫(kù),它的邊長(zhǎng)為x米,則4x=100,x=25.這時(shí)面積達(dá)到625米,當(dāng)然符合要求.

  (3)如果利用場(chǎng)地北面的那堵舊墻,取矩形的長(zhǎng)與舊墻平行,設(shè)與墻垂直的矩形一邊長(zhǎng)為x米,則另一邊為100-2x,如圖.

  因?yàn)榕f墻長(zhǎng)50米,所以100-2x≤50.即x≥25米.若S=600平方米,則由x(100-2x)=600,即x2-50x+300=0,解得x1=25+5,x2=25-5.根據(jù)x≥25,舍去x2=25-5

  所以,利用舊墻,取矩形垂直于舊墻一邊長(zhǎng)為25+5米(約43米),另一邊長(zhǎng)約14米,符合要求.

  (4)如果充分利用北面舊墻,即矩形一邊是50米舊墻時(shí),用100米籬笆圍成矩形倉(cāng)庫(kù),則矩形另一邊長(zhǎng)為25米,這時(shí)矩形面積為S=50×25=1250(平方米).即面積可達(dá)1250平方米,符合設(shè)計(jì)要求.

還可以有其他一些符合要求的設(shè)計(jì)方案.請(qǐng)你試試看.

查看答案和解析>>

同步練習(xí)冊(cè)答案