分析 (1)如圖,連接OE.首先證明AC∥OE,推出∠CAE=∠AEO,由OA=OE,推出∠AEO=∠OAE=∠CAE即可證明.
(2)設OE=OA=OD=r,由OE∥AC,得$\frac{OE}{AC}$=$\frac{OB}{BA}$,即$\frac{r}{8}$=$\frac{18}{18+r}$,解方程即可.
解答 (1)證明:如圖,連接OE.
∵BC是⊙O切線,
∴OE⊥BC,
∴∠OEB=90°,
∵∠C=90°,
∴∠C=∠OEB=90°,
∴AC∥OE,
∴∠CAE=∠AEO,
∵OA=OE,
∴∠AEO=∠OAE=∠CAE,
∴AE平分∠CAB.
(2)解:設OE=OA=OD=r,
∵OE∥AC,
∴$\frac{OE}{AC}$=$\frac{OB}{BA}$,
∴$\frac{r}{8}$=$\frac{18}{18+r}$,
∴r=6(負根已經(jīng)舍棄)
∴BD=OB-OD=18-6=12.
點評 本題考查切線的性質(zhì)、平行線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識,學會用方程的思想思考問題,屬于中考?碱}型.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 9280mm | B. | 6280mm | C. | 6140mm | D. | 457mm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 75° | B. | 40° | C. | 65° | D. | 115° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com