【題目】甲、乙、丙三人之間相互傳球,球從一個(gè)人手中隨機(jī)傳到另外一個(gè)人手中,共傳球三次.

(1)若開始時(shí)球在甲手中,求經(jīng)過三次傳球后,球傳回甲手中的概率是多少?

(2)若丙想使球經(jīng)過三次傳遞后,球落在自己手中的概率最大,丙會(huì)讓球開始時(shí)在誰手中?請(qǐng)說明理由.

【答案】(1);(2)在甲手中或乙手中,理由見解析

【解析】分析:(1)畫出樹狀圖,然后根據(jù)概率公式列式進(jìn)行計(jì)算即可得解;

(2)根據(jù)(1)中的概率解答.

本題解析:(1)畫樹狀圖如圖,

三次傳球有8種等可能結(jié)果,

其中傳回甲手中的有2種,即甲甲,甲甲.

所以P(傳球三次回到甲手中)=.

(2)由畫樹狀圖可知:從甲開始傳球,傳球三次后球傳到丙手中的概率為,

同理,從乙開始傳球,傳球三次后球傳到丙手中的概率也為,

但從丙自己開始傳球,傳球三次后,球傳到自己手中的概率為,

所以,丙想使球經(jīng)過三次傳遞后,球落在自己手中的概率最大,丙會(huì)讓球開始時(shí)球在甲手中或乙手中.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分線,DE平分∠ADC交AC于E,則∠ADE= °。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.
(1)求證:AB∥CD;
(2)H是直線CD上一動(dòng)點(diǎn)(不與點(diǎn)D重合),BI平分∠HBD.寫出∠EBI與∠BHD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我區(qū)很多學(xué)校開展了大課間活動(dòng).某校初三(1)班抽查了10名同學(xué)每分鐘仰臥起坐的次數(shù),數(shù)據(jù)如下(單位:次):51,69,64,52,64,72,48,52,76,52,那么這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為( ).
A.64和58
B.58和64
C.58和52
D.52和58

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)A、B、C均在格點(diǎn)上.

(1)請(qǐng)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)若平移線段AB,使B移動(dòng)到C的位置,請(qǐng)?jiān)趫D中畫出A移動(dòng)后的位置D,依次連接B、C、D、A,并求出四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)第一季度的利潤(rùn)是82.75萬元,其中一月份的利潤(rùn)是25萬元,若利潤(rùn)平均每月的增長(zhǎng)率為x , 則依題意列方程為(  )
A.25(1+x2=82.75
B.25+50x=82.75
C.25+25(1+x2=82.75
D.25[1+(1+x)+(1+x2]=82.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將直線y=3x+2沿y軸向下平移5個(gè)單位長(zhǎng)度,則平移后直線與y軸的交點(diǎn)坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a+b=1,則a2﹣b2+2b的值為( 。

A. 4 B. 3 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠OAB=45°,點(diǎn)A的坐標(biāo)是(4,0),AB= ,連結(jié)OB.

(1)直接寫出點(diǎn)B的坐標(biāo).
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線O﹣B﹣A方向向終點(diǎn)A勻速運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿OA方向勻速運(yùn)動(dòng),若點(diǎn)P的運(yùn)動(dòng)速度為 個(gè)單位/秒,點(diǎn)Q的運(yùn)動(dòng)速度是1個(gè)單位/秒,P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)求出使△OPQ的面積等于1.5時(shí)t的值.
(3)動(dòng)點(diǎn)P仍按(2)中的方向和速度運(yùn)動(dòng),但Q點(diǎn)從A點(diǎn)向O點(diǎn)運(yùn)動(dòng),速度為1個(gè)單位/秒,P、Q與△OAB中的任意一個(gè)頂點(diǎn)形成直角三角形時(shí),求此時(shí)t(t≠0)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案