【題目】茂林貨棧打算在年前用 30000 元購進(jìn)一批彩燈進(jìn)行銷售,由于進(jìn)貨廠家促銷,實際可以以 8 折的價格購進(jìn)這批彩燈,結(jié)果可以比計劃多購進(jìn)了 100 盞彩燈.
⑴該貨棧實際購進(jìn)每盞彩燈多少元?
⑵該貨棧打算在進(jìn)價的基礎(chǔ)上,每盞燈加價 30%,進(jìn)行銷售,該貨棧要想獲得利潤不低于 10000 元,應(yīng)至少再購進(jìn)彩燈多少盞?
【答案】(1)60;(2)56.
【解析】
(1)設(shè)該貨棧原來購進(jìn)每盞彩燈為x元,根據(jù)等量關(guān)系,列出關(guān)于x的分式方程,即可;
(2)設(shè)再購進(jìn)彩燈a盞,根據(jù)題意,列出關(guān)于a的不等式,即可.
(1)設(shè)該貨棧原來購進(jìn)每盞彩燈為x元,則實際購進(jìn)價為0.8x元,
根據(jù)題意得:,
解得:x=75,
經(jīng)檢驗:x=75是方程的解,且符合題意,
∴0.8x=0.8×75=60(元),
答:該貨棧實際購進(jìn)每盞彩燈為60元.
(2)設(shè)再購進(jìn)彩燈a盞,
由(1)知:30000÷60=500(盞),
根據(jù)題得:(500+a)×60×30%≥10000,
解得:a≥,
∵a取大于等于的最小整數(shù),
∴a=56,
答:應(yīng)至少再購進(jìn)彩燈56盞.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AB=BC,∠B=60°,E是BC邊上一點.
(1)如圖1,若E是BC的中點,∠AED=60°,求證:CE=CD;
(2)如圖2,若∠EAD=60°,求證:△AED是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c過原點O和B(﹣4,4),且對稱軸為直線x=.
(1)求拋物線的函數(shù)表達(dá)式;
(2)D是直線OB下方拋物線上的一動點,連接OD,BD,在點D運動過程中,當(dāng)△OBD面積最大時,求點D的坐標(biāo)和△OBD的最大面積;
(3)如圖2,若點P為平面內(nèi)一點,點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,直接寫出滿足△POD∽△NOB的點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN分別與直線AC、DG交于點B.F,且∠1=∠2.∠ABF的角平分線BE交直線DG于點E,∠BFG的角平分線FC交直線AC于點C.
(1)求證:BE∥CF;
(2)若∠C=35°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,BO、CO 分別平分∠ABC、∠ACB,DE 經(jīng)過點 O, 且 DE∥BC,DE 分別交 AB、AC 于 D、E,則圖中等腰三角形的個數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在坐標(biāo)平面中,A(-6,0)、B(6,0),點 C 在 y 軸正半軸上,且∠ACB=90.
⑴求點 C 的坐標(biāo);
⑵如圖2,點 P 為線段 BC 上一點,連接 PA,設(shè)點 P 的橫坐標(biāo)為 m,△PAC 的面積為 S,用含 m 的代數(shù)式來表示 S;
⑶如圖3,在⑵的條件下,過點 B 向 PA 引垂線,垂足為 E,延長 BE、AC 相交于點 F,連接PF,若 PF=3,求 m 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A(1,n1),點B(2,n2)在一次函數(shù)y1=k1x+b1圖像上:點C(3,n3),點D(4,n4)在一次函數(shù)y2=k2x+b2圖像上,y1 和y2圖像交點坐標(biāo)是(m,n).若n4<n1<n3<n2,則下列說法:①k1>0,k2<0;②k1<0,k2>0;③1<m<3;④2<m<4,正確的是____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈,tan37°≈,sin65°≈,tan65°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,燈桿AB與墻MN的距離為18米,小麗在離燈桿(底部)9米的D處測得其影長DE為3m,設(shè)小麗身高為1.6m.
(1)求燈桿AB的高度;
(2)小麗再向墻走7米,她的影子能否完全落在地面上?若能,求此時的影長;若不能,求落在墻上的影長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com