【題目】已知a+b=1,ab=﹣1,設(shè)S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)計(jì)算S2.
(2)請(qǐng)閱讀下面計(jì)算S3的過(guò)程:
∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你讀懂了嗎?請(qǐng)你先填空完成(2)中S3的計(jì)算結(jié)果,再用你學(xué)到的方法計(jì)算S4
(3)試寫出Sn﹣2,Sn﹣1,Sn三者之間的數(shù)量關(guān)系式(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計(jì)算S7.
【答案】(1)3;(2)4,S4=7;(3)Sn﹣2+Sn﹣1=Sn,S7=29.
【解析】
(1)根據(jù)完全平方公式即可求出S2;
(2)根據(jù)得出的結(jié)論,代入即可求出S3;根據(jù)完全平方公式即可求出S4;
(3)根據(jù)(1)(2)求出的結(jié)果得出規(guī)律,即可求出答案.
解:(1)S2=a2+b2=(a+b)2﹣2ab=12﹣2×(﹣1)=3;
(2)S3=S2+1=3+1=4;
∵S4=a4+b4=( a2+b2)2﹣2a2b2=( a2+b2)2﹣2(ab)2,
又∵a2+b2=3,ab=﹣1,
∴S4=7,
故答案為:4.
(3)∵S1=1,S2=3,S3=4,S4=7,
∴S1+S2=S3,S2+S3=S4.
猜想:Sn﹣2+Sn﹣1=Sn.
∵S3=4,S4=7,
∴S5=S3+S4=4+7=11,
∴S6=S4+S5=7+11=18,
∴S7=S5+S6=11+18=29.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國(guó)早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量小雁塔的高度,由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,因此經(jīng)過(guò)研究需要進(jìn)行兩次測(cè)量,于是在陽(yáng)光下,他們首先利用影長(zhǎng)進(jìn)行測(cè)量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測(cè)得此時(shí)木棒的影長(zhǎng)DE=2.4米;然后,小希在BD的延長(zhǎng)線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測(cè)得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測(cè)量數(shù)據(jù),求小雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲,乙兩組數(shù)據(jù)的折線圖如圖所示,設(shè)甲,乙兩組數(shù)據(jù)的方差分別為S2甲,S2乙,則S2甲與S2乙大小關(guān)系為( 。
A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式組的所有整數(shù)解的和為5,且使關(guān)于y的分式方程的解大于1,則滿足條件的所有整數(shù)a的和是( )
A.16B.12C.11D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在直角坐標(biāo)系中的位置如圖,其中A點(diǎn)的坐標(biāo)是(﹣2,3)
(1)△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,請(qǐng)作出△A1B1C1,并寫出A點(diǎn)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)若△ABC經(jīng)過(guò)平移后A點(diǎn)的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)是(2,﹣1),請(qǐng)作△A2B2C2,并計(jì)算平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且經(jīng)過(guò)點(diǎn)(﹣1,0),下列四個(gè)結(jié)論:①如果點(diǎn)(,y1)和(2,y2)都在拋物線上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的實(shí)數(shù));④;其中正確的有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,,,,垂足分別為,,
(1)如圖1,①線段和的數(shù)量關(guān)系是__________;
②請(qǐng)寫出線段,,之間的數(shù)量關(guān)系并證明.
(2)如圖2,若已知條件不變,上述結(jié)論②還成立嗎?如果不成立,請(qǐng)直接寫出線段,,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在中,,,點(diǎn)是斜邊的中點(diǎn),點(diǎn),分別在線段,上, 且.
(1)求證:為等腰直角三角形;
(2)若的面積為7,求四邊形的面積;
(3)如圖(2),如果點(diǎn)運(yùn)動(dòng)到的延長(zhǎng)線上時(shí),點(diǎn)在射線上且保持,還是等腰直角三角形嗎.請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在進(jìn)行二次根式化簡(jiǎn)時(shí),我們有時(shí)會(huì)碰上如,,一樣的式子,這樣的式子我們可以將其進(jìn)一步化簡(jiǎn)=,,以上這種化簡(jiǎn)的方法叫做分母有理化,請(qǐng)利用分母有理化解答下列問題:
(1)化簡(jiǎn):;
(2)若a是的小數(shù)部分,求的值;
(3)矩形的面積為3+1,一邊長(zhǎng)為﹣2,求它的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com