【題目】已知:△ABC與△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.
提出問(wèn)題:如圖1,當(dāng)∠ADB=∠ACB=90°時(shí),求證:AD=BC;
類(lèi)比探究:如圖2,當(dāng)∠ADB≠∠ACB時(shí),AD=BC是否還成立?并說(shuō)明理由.
綜合運(yùn)用:如圖3,當(dāng)β=18°,BC=1,且AB⊥BC時(shí),求AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)仍然成立,理由見(jiàn)解析;(3)+1
【解析】
(1)證明△DBA≌△CAB即可;
(2)作∠BEC=∠BCE,BE交AC于E,證明△DBA≌△EAB即可;
(3)作∠BEC=∠BCE,BE交AC于E,由(2)得,AD=BC=BE=1,通過(guò)角之間的關(guān)系可求得EF=BE=1,再證△CBE∽△CFB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例求解即可.
(1)在△BDA和△CAB中
∴△DBA≌△CAB(AAS);
(2)結(jié)論仍然成立.
理由:作∠BEC=∠BCE,BE交AC于E.
∵∠ADB+∠ACB=∠AEB+∠BEC=180°
∴∠ADB=∠AEB.
又∠CAB=∠DBA,AB=BA
∴△DBA≌△EAB(AAS),
∴BE=AD,
∵∠BEC=∠BCE,
∴BC=BE,
∴AD=BC.
(3)作∠BEC=∠BCE,BE交AC于E,
由(2)得,AD=BC=BE=1
在Rt△ACB中,∠CAB=18°
∴∠C=72°,∠BEC=∠C= 72°
由∠CFB=∠CAB+∠DBA=36°
∴∠EBF=∠CEB-∠CFB=36°
∴EF=BE=1
在△BCF中,∠FBC=180°-∠BFC-∠C=72°
∴∠FBC=∠BEC,∠C=∠C
∴△CBE∽△CFB
∴=
令CE=x,∴1=x(x+1)
解之,x=
∴CF=
由∠FBC=∠BEC
∴BF=CF.又AF=BF
∴AC=2CF=+1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象過(guò)點(diǎn),對(duì)稱(chēng)軸為直線,給出以下結(jié)論:①;②;③:④若為函數(shù)圖象上的兩點(diǎn),則.其中正確的是( )
A.①②④B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明設(shè)計(jì)的“過(guò)直線外一點(diǎn)作已知直線的平行線”的尺規(guī)作圖過(guò)程.
已知:直線及直線外一點(diǎn)P.
求作:直線,使.
作法:如圖,
①在直線上取一點(diǎn)O,以點(diǎn)O為圓心,長(zhǎng)為半徑畫(huà)半圓,交直線于兩點(diǎn);
②連接,以B為圓心,長(zhǎng)為半徑畫(huà)弧,交半圓于點(diǎn)Q;
③作直線.
所以直線就是所求作的直線.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明
證明:連接,
∵,
∴__________.
∴(______________)(填推理的依據(jù)).
∴(_____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以菱形的對(duì)角線為邊,在的左側(cè)作正方形連結(jié)并延長(zhǎng)交于點(diǎn).若正方形的面積是菱形面積的倍,,則_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了在七年級(jí)600名學(xué)生中順利開(kāi)展“四點(diǎn)半”課堂,采用隨機(jī)抽樣的方法,從喜歡乒乓球、跳繩、籃球、繪畫(huà)四個(gè)方面調(diào)查了若干名學(xué)生,并繪制了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合兩幅統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)這次調(diào)查活動(dòng)中,一共調(diào)查了 名學(xué)生;
(2)“乒乓球”所在扇形的圓心角是 度;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)根據(jù)本次調(diào)查情況,請(qǐng)你估計(jì)七年級(jí)600名學(xué)生中喜歡“乒乓球”的人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)().
(1)求出二次函數(shù)圖象的對(duì)稱(chēng)軸;
(2)若該二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且整數(shù),滿足,求二次函數(shù)的表達(dá)式;
(3)對(duì)于該二次函數(shù)圖象上的兩點(diǎn),,設(shè),當(dāng)時(shí),均有,請(qǐng)結(jié)合圖象,直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面尚未完成的頻率分布表和頻率分布直方圖,解答下列問(wèn)題:
(1)填充頻率分布表中的空格;
(2)補(bǔ)全頻率分布直方圖;
(3)全體參賽學(xué)生中,競(jìng)賽成績(jī)落在哪組范圍內(nèi)的人數(shù)最多?(不要求說(shuō)明理由)
頻率分布表 | ||
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計(jì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=BC,以BC為直徑作⊙O,AC交⊙O于點(diǎn)E,過(guò)點(diǎn)E作EG⊥AB于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:EG是⊙O的切線;
(2)若GF=2,GB=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】遠(yuǎn)遠(yuǎn)在一個(gè)不透明的盒子里裝了4個(gè)除顏色外其他都相同的小球,其中有3個(gè)是紅球,1個(gè)是綠球,每次拿一個(gè)球然后放回去,拿2次,則至少有一次取到綠球的概率是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com