【題目】如圖,在中,是直徑,是弦,,垂足為,連接,,則下列說(shuō)法中正確的是(

A.B.C.D.

【答案】C

【解析】

連接OD,利用圓周角定理得到∠ADB90°,利用垂徑定理得到CEDE,,則根據(jù)圓周角定理得到∠COE2BAD=∠BOD50°,所以∠OCE40°OECE,然后利用∠BOD50°,∠OBD65°判斷ODBD,即OCBD,從而可對(duì)各選項(xiàng)進(jìn)行判斷.

解:連接OD,如圖,

AB為直徑,
∴∠ADB90°
ABCD,
CEDE,

∴∠COE2BAD=∠BOD2×25°50°

所以C選項(xiàng)正確;
∴∠OCE40°,所以A選項(xiàng)錯(cuò)誤;
OECE,所以B選項(xiàng)錯(cuò)誤;
∵∠BOD50°,∠OBD65°,
ODBD,即OCBD,所以D選項(xiàng)錯(cuò)誤.
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱(chēng)軸為直線的拋物線經(jīng)過(guò),兩點(diǎn),拋物線與軸的另一交點(diǎn)為

1)求拋物線的解析式;

2)若點(diǎn)為第一象限內(nèi)拋物線上一點(diǎn),設(shè)四邊形的面積為,求的最大值;

3)若是線段上一動(dòng)點(diǎn),在軸上是否存在這樣的點(diǎn),使為等腰三角形且為直角三角形?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,,射線與邊交于點(diǎn)、分別為、中點(diǎn),設(shè)點(diǎn)、到射線的距離分別為,則的最大值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[閱讀理解]

構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點(diǎn)問(wèn)題.

例如:如圖,D是△ABCAB上一點(diǎn),EAC的中點(diǎn),過(guò)點(diǎn)CCFAB,交DE的延長(zhǎng)線于點(diǎn)F,則易證E是線段DF的中點(diǎn).

[經(jīng)驗(yàn)運(yùn)用]

請(qǐng)運(yùn)用上述閱讀材料中所積累的經(jīng)驗(yàn)和方法解決下列問(wèn)題.

1)如圖1,在正方形ABCD中,點(diǎn)EAB上,點(diǎn)FBC的延長(zhǎng)線上,且滿(mǎn)足AECF,連接EFAC于點(diǎn)G

求證:GEF的中點(diǎn);

CGBE;

[拓展延伸]

2)如圖2,在矩形ABCD中,AB2BC,點(diǎn)EAB上,點(diǎn)FBC的延長(zhǎng)線上,且滿(mǎn)足AE2CF,連接EFAC于點(diǎn)G.探究BECG之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,若點(diǎn)EBA的延長(zhǎng)線上,點(diǎn)F在線段BC上,DFAC于點(diǎn)H,BF2,CF1,( 2)中的其它條件不變,請(qǐng)直接寫(xiě)出GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,PA是過(guò)正方形頂點(diǎn)A的直線,作DEPAE,將射線DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)45°與直線PA交于點(diǎn)F

1)如圖1,當(dāng)∠PAD45°時(shí),點(diǎn)F恰好與點(diǎn)A重合,則的值為   ;

2)如圖2,若45°<∠PAD90°,連接BF、BD,試求的值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,樓房BD的前方豎立著旗桿AC.小亮在B處觀察旗桿頂端C的仰角為45°,在D處觀察旗桿頂端C的俯角為30°,樓高BD20米.

1)求∠BCD的度數(shù);

2)求旗桿AC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣、兩類(lèi)薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1575萬(wàn)元.改造一所類(lèi)學(xué)校和兩所類(lèi)學(xué)校共需資金230萬(wàn)元;改造兩所類(lèi)學(xué)校和一所類(lèi)學(xué)校共需資金205萬(wàn)元.

1)改造一所類(lèi)學(xué)校和一所類(lèi)學(xué)校所需的資金分別是多少萬(wàn)元?

2)若該縣的類(lèi)學(xué)校不超過(guò)5所,則類(lèi)學(xué)校至少有多少所?

3)我市計(jì)劃今年對(duì)該縣兩類(lèi)學(xué)校共6所進(jìn)行改造,改造資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若今年國(guó)家財(cái)政撥付的改造資金不超過(guò)400萬(wàn)元;地方財(cái)政投入的改造資金不少于70萬(wàn)元,其中地方財(cái)政投入到兩類(lèi)學(xué)校的改造資金分別為每所10萬(wàn)元和15萬(wàn)元.請(qǐng)你通過(guò)計(jì)算求出有幾種改造方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兒童用藥的劑量常常按他們的體重來(lái)計(jì)算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時(shí),每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實(shí)中,該藥品每次實(shí)際服用量可以比每次正常服用略高一些,但不能超過(guò)正常服用量的12倍,否則會(huì)對(duì)兒童的身體造成較大損害.

1)求之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時(shí)可以一次服下一袋藥?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC6,BC8,矩形CDEF的頂點(diǎn)E在邊AB上,D,F兩點(diǎn)分別在邊AC,BC上,且,將矩形CDEF以每秒1個(gè)單位長(zhǎng)度的速度沿射線CB方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形CDEF與△ABC重疊部分的面積為S,則反映St的函數(shù)關(guān)系的圖象為( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案