【題目】如圖,已知四邊形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB
(1)若∠DAB=72°,∠2= °,∠3= °;
(2)求證:AE∥CF.
【答案】(1)54,36;(2)證明見解析.
【解析】
(1)求出∠DAB+∠DCB=180°,求出∠2+∠1=90°,然后即可求出∠2和∠3的度數(shù);
(2)推出∠1=∠3,根據(jù)平行線的判定得出即可.
(1)解:∵∠DAB+∠DCB+∠D+∠B=360°,∠D=∠B=90°,
∴∠DAB+∠DCB=360°﹣(∠D+∠B)=180°,
∵AE平分∠DAB,CF平分∠DCB,∠DAB=72°,
∴∠1=∠DAB=36°,∠2=∠DCB,
∴∠1+∠2=(∠DAB+∠DCB)=90°,
∴∠2=54°,
∵∠3+∠2+∠B=180°,
∴∠3=180°﹣∠B﹣∠2=180°﹣90°﹣54°=36°,
故答案為:54,36;
(2)證明:由(1)得∴∠1=36°,∠3=36°,
∴∠1=∠3,
∴AE∥CF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,下面的結(jié)論:
①∠APO+∠DCO=30°;②△OPC是等邊三角形:③AC=DO+AP;④S△ABC=S四形形AOCP.
其中正確的是_______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,是的中點,將沿折疊后得到,點在矩形內(nèi)部,延長交于點G.
(1)猜想線段與有何數(shù)量關(guān)系?并證明你的結(jié)論;
(2)若,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;
①若∠B=90°則∠F= ;
②若∠B=a,求∠F的度數(shù)(用a表示);
(2)如圖2所示,若點G是CB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+∠H的值是否變化?若變化,請說明理由;若不變,請求出其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點D為AB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù) 圖像的大致位置如圖所示,則ab,bc,2a+b, , ,b2-a2 等代數(shù)式的值中,正數(shù)有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AC∥DF,直線AF分別與直線BD、CE相交于點G,H,∠1=∠2,求證:∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH( 。
∴∠2= ( 等量代換 )
∴ ∥ (同位角相等,兩直線平行)
∴∠C= (兩直線平行,同位角相等)
又∵AC∥DF( 。
∴∠D=∠ABG ( 。
∴∠C=∠D ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com