【題目】平面直角坐標(biāo)系中,對(duì)稱軸平行與軸的拋物線過(guò)點(diǎn)、和.
()求拋物線的表達(dá)式.
()現(xiàn)將此拋物線先沿軸方向向右平移個(gè)單位,再沿軸方向平移個(gè)單位,若所得拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左邊),且使(頂點(diǎn)、、依次對(duì)應(yīng)頂點(diǎn)、、),試求的值,并說(shuō)明方向.
【答案】(1);(2)6
【解析】試題分析:(1)利用待定系數(shù)法直接求出拋物線的解析式;
(2)設(shè)出D,E坐標(biāo),根據(jù)平移,用k表示出平移后的拋物線解析式,利用坐標(biāo)軸上點(diǎn)的特點(diǎn)得出m+n=16,mn=63-,進(jìn)而利用相似三角形得出比例式建立方程即可求出k
試題解析:()設(shè)的物線.
將點(diǎn), 和代入得:
解得: .
∴.
()設(shè)點(diǎn), .
∵,∴ , .
由()知,拋物線的解析式為.
∴將此拋物線先沿軸方向向右平移個(gè)單位,得到,
即.
∴再沿軸方向平移個(gè)單位,則;
令,則,
∴.
∴, (韋達(dá)定理).
∵, ,
∴.
∵∽,
∴,
∴.
∴,
∴.
∴k=6,
即:k=6,向下平移6個(gè)單位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】服裝店銷(xiāo)售某款服裝,標(biāo)價(jià)為300元,若按標(biāo)價(jià)的八折銷(xiāo)售,仍可獲利20%,則這款服裝每件的進(jìn)價(jià)是 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解九年級(jí)男生1000米長(zhǎng)跑的成績(jī),從中隨機(jī)抽取了50名男生進(jìn)行測(cè)試,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的得分進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四個(gè)等級(jí),并繪制成下面的頻數(shù)分布表(表一)和扇形統(tǒng)計(jì)圖(圖①)。
表一
等級(jí) | 成績(jī)(得分) | 頻數(shù)(人數(shù)) | 頻率 |
A | 10分 | 7 | 0.14 |
9分 | 12 | 0.24 | |
B | 8分 | ||
7分 | 8 | 0.16 | |
C | 6分 | ||
5分 | 1 | 0.02 | |
D | 5分以下 | 3 | 0.06 |
合計(jì) | 50 | 1.00 |
(1)求出、的值,直接寫(xiě)出、的值;
(2)求表示得分為C等級(jí)的扇形的圓心角的度數(shù);
(3)如果該校九年級(jí)共有男生250名,試估計(jì)這250名男生中成績(jī)達(dá)到A等級(jí)的人數(shù)約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了幫助云南昭通地震災(zāi)區(qū)重建家園,某校號(hào)召師生自愿捐款.第一次捐款總額為2400元,第二次捐款總額為6800元.已知第二次捐款人數(shù)是第一次的2倍,而且人均捐款額比第一次多20元.求第一次捐款的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與軸交于A、B兩點(diǎn)(A在B的左側(cè)),且A、B兩點(diǎn)的橫坐標(biāo)是方程-12=0的兩個(gè)根.拋物線與軸的正半軸交于點(diǎn)C,且OC=AB.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為,△CEF的面積為S,求S與之間的函數(shù)關(guān)系式;
(4)對(duì)于(3),試說(shuō)明S是否存在最大值或最小值,若存在,請(qǐng)求出此值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行”的題設(shè)是________,結(jié)論是________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com