【題目】如圖,已知反比例函數(shù)y1= 與一次函數(shù)y2=k2x+b的圖象交于點A(1,8),B(﹣4,m)兩點.
(1)求k1 , k2 , b的值;
(2)求△AOB的面積;
(3)請直接寫出不等式 x+b的解.

【答案】
(1)解:∵反比例函數(shù)y= 與一次函數(shù)y=k2x+b的圖象交于點A(1,8)、B(﹣4,m),

∴k1=1×8=8,m=8÷(﹣4)=﹣2,

∴點B的坐標為(﹣4,﹣2).

將A(1,8)、B(﹣4,﹣2)代入y2=k2x+b中,

,解得:

∴k1=8,k2=2,b=6.


(2)解:當x=0時,y2=2x+6=6,

∴直線AB與y軸的交點坐標為(0,6).

∴SAOB= ×6×4+ ×6×1=15.


(3)解:觀察函數(shù)圖象可知:當﹣4<x<0或x>1時,一次函數(shù)的圖象在反比例函數(shù)圖象的上方,

∴不等式 x+b的解為﹣4≤x<0或x≥1.


【解析】(1)由點A的坐標利用反比例函數(shù)圖象上點的坐標特征即可得出反比例函數(shù)解析式,再結合點B的橫坐標即可得出點B的坐標,根據(jù)點A、B的坐標利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)根據(jù)一次函數(shù)圖象上點的坐標特征即可求出一次函數(shù)圖象與y軸的交點坐標,再利用分割圖形法即可求出△AOB的面積;(3)根據(jù)兩函數(shù)圖象的上下位置關系即可得出不等式的解集.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將一張矩形紙片ABCD如圖所示那樣折起,使頂點C落在C′處,其中AB=4,若∠C′ED=30°,則折痕ED的長為(
A.4
B.
C.8
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,CA=CB=1,將△ABC繞點B順時針旋轉45°,得到△DBE(A、D兩點為對應點),畫出旋轉后的圖形,并求出線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;
(2)當P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標;
(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,點D,E分別在AB,AC上,且CD與BE相交于點F,已知△BDF的面積為6,△BCF的面積為9,△CEF的面積為6,則四邊形ADFE的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①b2﹣4ac=0;②2a+b=0;③若(x1 , y1),(x2 , y2)在函數(shù)圖象上,當x1<x2時,y1<y2;④a﹣b+c<0.其中正確的是( )

A.②④
B.③④
C.②③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=﹣ ,且經過A,C兩點,與x軸的另一個交點為點B.

(1)求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求四邊形PAOC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△AOC相似?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,如圖①所示,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].

(1)如圖①,對△ABC作變換[60°, ]得到△AB′C′,則SAB'C:SABC=;直線BC與直線B′C′所夾的銳角為度;

(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;

(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是(
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0

查看答案和解析>>

同步練習冊答案