【題目】如圖,已知O是以AB為直徑的ABC的外接圓,過(guò)點(diǎn)A作O的切線(xiàn)交OC的延長(zhǎng)線(xiàn)于點(diǎn)D,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.

(1)求證:DAC=DCE;

(2)若AB=2,sinD=,求AE的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)

【解析】

試題分析:(1)由切線(xiàn)的性質(zhì)可知DAB=90°,由直角所對(duì)的圓周為90°可知ACB=90°,根據(jù)同角的余角相等可知DAC=B,然后由等腰三角形的性質(zhì)可知B=OCB,由對(duì)頂角的性質(zhì)可知DCE=OCB,故此可知DAC=DCE;

(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由DAC=DCE,D=D可知DEC∽△DCA,故此可得到DC2=DEAD,故此可求得DE=,于是可求得AE=

試題解析:(1)AD是圓O的切線(xiàn),∴∠DAB=90°.

AB是圓O的直徑,∴∠ACB=90°.

∵∠DAC+CAB=90°,CAB+ABC=90°,∴∠DAC=B.

OC=OB,∴∠B=OCB.

∵∠DCE=OCB,DAC=DCE.

(2)AB=2,AO=1.

sinD=,OD=3,DC=2.

在RtDAO中,由勾股定理得AD==

∵∠DAC=DCE,D=D,∴△DEC∽△DCA,,即

解得:DE=,AE=AD﹣DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ABC45°,F是高AD與高BE的交點(diǎn).

1)求證:ADC≌△BDF

2)連接CF,若CD4,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知l1∥l2∥l3,相鄰兩條平行直線(xiàn)間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)矩形ABCD的對(duì)角線(xiàn)AC的中點(diǎn)OEFAC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AECF

1)求證:四邊形AECF是菱形;

2)若AB6,AC10,EC,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,中點(diǎn),,給出四個(gè)結(jié)論:①;②;③;④,其中成立的有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ACBD中,AC6,BC8AD2,BD4DE是△ABD的邊AB上的高,且DE4,求△ABC的邊AB上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市為創(chuàng)建國(guó)家衛(wèi)生城市,需要購(gòu)買(mǎi)甲、乙兩種類(lèi)型的分類(lèi)垃圾桶(如圖所示),據(jù)調(diào)查該城市的A、B、C三個(gè)社區(qū)積極響應(yīng)號(hào)并購(gòu)買(mǎi),具體購(gòu)買(mǎi)的數(shù)和總價(jià)如表所示.

社區(qū)

甲型垃圾桶

乙型垃圾桶

總價(jià)

A

10

8

3320

B

5

9

2860

C

a

b

2820

1)運(yùn)用本學(xué)期所學(xué)知識(shí),列二元一次方程組求甲型垃圾桶、乙型垃圾桶的單價(jià)每套分別是多少元?

2)按要求各個(gè)社區(qū)兩種類(lèi)型的垃圾桶都要有,則a   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線(xiàn)y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線(xiàn)的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=mx2﹣8mx+4m+2m2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為Bx1,0),Cx2,0),且x2﹣x1=4,直線(xiàn)AD∥x軸,在x軸上有一動(dòng)點(diǎn)Et,0)過(guò)點(diǎn)E作平行于y軸的直線(xiàn)l與拋物線(xiàn)、直線(xiàn)AD的交點(diǎn)分別為P、Q

1)求拋物線(xiàn)的解析式;

2)當(dāng)0t≤8時(shí),求△APC面積的最大值;

3)當(dāng)t2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案