【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過(guò)點(diǎn)A作⊙O的切線(xiàn)交OC的延長(zhǎng)線(xiàn)于點(diǎn)D,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)由切線(xiàn)的性質(zhì)可知∠DAB=90°,由直角所對(duì)的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質(zhì)可知∠B=∠OCB,由對(duì)頂角的性質(zhì)可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;
(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DEAD,故此可求得DE=,于是可求得AE=.
試題解析:(1)∵AD是圓O的切線(xiàn),∴∠DAB=90°.
∵AB是圓O的直徑,∴∠ACB=90°.
∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.
∵OC=OB,∴∠B=∠OCB.
又∵∠DCE=∠OCB,∴∠DAC=∠DCE.
(2)∵AB=2,∴AO=1.
∵sin∠D=,∴OD=3,DC=2.
在Rt△DAO中,由勾股定理得AD==.
∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.
解得:DE=,∴AE=AD﹣DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC=45°,F是高AD與高BE的交點(diǎn).
(1)求證:△ADC≌△BDF.
(2)連接CF,若CD=4,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知l1∥l2∥l3,相鄰兩條平行直線(xiàn)間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)矩形ABCD的對(duì)角線(xiàn)AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,為中點(diǎn),,給出四個(gè)結(jié)論:①;②;③;④,其中成立的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ACBD中,AC=6,BC=8,AD=2,BD=4,DE是△ABD的邊AB上的高,且DE=4,求△ABC的邊AB上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為創(chuàng)建國(guó)家衛(wèi)生城市,需要購(gòu)買(mǎi)甲、乙兩種類(lèi)型的分類(lèi)垃圾桶(如圖所示),據(jù)調(diào)查該城市的A、B、C三個(gè)社區(qū)積極響應(yīng)號(hào)并購(gòu)買(mǎi),具體購(gòu)買(mǎi)的數(shù)和總價(jià)如表所示.
社區(qū) | 甲型垃圾桶 | 乙型垃圾桶 | 總價(jià) |
A | 10 | 8 | 3320 |
B | 5 | 9 | 2860 |
C | a | b | 2820 |
(1)運(yùn)用本學(xué)期所學(xué)知識(shí),列二元一次方程組求甲型垃圾桶、乙型垃圾桶的單價(jià)每套分別是多少元?
(2)按要求各個(gè)社區(qū)兩種類(lèi)型的垃圾桶都要有,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線(xiàn)y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線(xiàn)的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=mx2﹣8mx+4m+2(m>2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線(xiàn)AD∥x軸,在x軸上有一動(dòng)點(diǎn)E(t,0)過(guò)點(diǎn)E作平行于y軸的直線(xiàn)l與拋物線(xiàn)、直線(xiàn)AD的交點(diǎn)分別為P、Q.
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)0<t≤8時(shí),求△APC面積的最大值;
(3)當(dāng)t>2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com