【題目】如圖,在正方形ABCD中,F為DC的中點(diǎn),EBC 上一點(diǎn),BC=4CE.求證:AFFE

【答案】證明過(guò)程見(jiàn)解析

【解析】

試題分析:連接AE,設(shè)正方形的邊長(zhǎng)為4a,分別根據(jù)RtADF,RtABE和RtECF的勾股定理求出,的值,然后根據(jù)勾股定理的逆定理得出垂直.

試題解析:連接AE,設(shè)正方形的邊長(zhǎng)為4a

RtADF中, AD=4a,DF=2a 據(jù)勾股定理得,AF2=AD2+DF2, 解得:AF2=20a2

RtABE中, AB=4a,BE=3a, 據(jù)勾股定理得,AE2=AB2+BE2, 解得:AE2=25a2

RtECF中, FC=2aCE=a, 據(jù)勾股定理得,EF2=CF2+CE2, 解得:EF2=5a2

AE2=AF2+EF2, AFFE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一定在ABC內(nèi)部的線段是( 。

A. 銳角三角形的三條高、三條角平分線、三條中線

B. 鈍角三角形的三條高、三條中線、一條角平分線

C. 任意三角形的一條中線、二條角平分線、三條高

D. 直角三角形的三條高、三條角平分線、三條中線

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把2a-[3-(2a+1)]化簡(jiǎn)后,結(jié)果正確的是( ).
A.4a-2
B.-2
C.4a-4
D.-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一直角三角形的木板三邊的平方和為1800cm2,則斜邊長(zhǎng)為( ).

A、80cm B、30cm C、90cm D、120cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小軍用50元錢去買單價(jià)是8元的筆記本,則他剩余的錢Q(元)與他買這種筆記本的本數(shù)x之間的關(guān)系是(
A.Q=8x
B.Q=8x﹣50
C.Q=50﹣8x
D.Q=8x+50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的三邊長(zhǎng)分別是m2+1, 2 m, m2-1(n為正整數(shù)),則最大角等于_______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,E為BC上一點(diǎn),過(guò)B作BGAE于G,延長(zhǎng)BG至點(diǎn)F使CFB=45°求證:AG=FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列六種說(shuō)法正確的個(gè)數(shù)是( )

①無(wú)限小數(shù)都是無(wú)理; ②正數(shù)、負(fù)數(shù)統(tǒng)稱有理數(shù); ③無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù);

④無(wú)理數(shù)與無(wú)理數(shù)的和一定還是無(wú)理數(shù); ⑤無(wú)理數(shù)與有理數(shù)的和一定是無(wú)理數(shù);

⑥ 有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù)( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三角形的三邊長(zhǎng)的平方分別為32,42,x2則此三角形是直角三角形的x2的值是()

A42 B52 C7 D52或7

查看答案和解析>>

同步練習(xí)冊(cè)答案