【題目】某校為選拔一名選手參加“美麗運(yùn)城,我為家鄉(xiāng)做代言”主題演講比賽,經(jīng)研究,按如圖所示的項(xiàng)目和權(quán)數(shù)對(duì)選拔賽的參賽選手進(jìn)行考評(píng)(因排版原因統(tǒng)計(jì)圖不完整).
下表是李明、張華在選拔賽中的得分情況:
結(jié)合以上信息,回答下列問(wèn)題:
(1)求服裝項(xiàng)目的權(quán)數(shù)及普通話項(xiàng)目對(duì)應(yīng)扇形的圓心角大;
(2)求李明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)根據(jù)你所學(xué)的知識(shí),幫助學(xué)校在李明、張華兩人中選擇一人參加“美麗運(yùn)城,我為家鄉(xiāng)做代言”主題演講比賽,并說(shuō)明理由.
【答案】(1)10%,72°;(2)眾數(shù):85;中位數(shù):82.5;(3)選擇李明參加“美麗運(yùn)城,我為家鄉(xiāng)做代言”主題演講比賽,理由詳見(jiàn)解析
【解析】
(1)先根據(jù)各對(duì)象的權(quán)數(shù)之和為1求解服裝項(xiàng)目的權(quán)數(shù);再根據(jù)各部分扇形所對(duì)圓心角=權(quán)數(shù)求解即得;
(2)先根據(jù)眾數(shù)的定義,找出李明所得分?jǐn)?shù)中出現(xiàn)次數(shù)最多的分?jǐn)?shù)即得眾數(shù);再根據(jù)中位數(shù)的定義,將李明所得分?jǐn)?shù)從小到大或者從大到小排列,并取中間兩個(gè)數(shù)的平均數(shù)即得中位數(shù);
(3)先根據(jù)各項(xiàng)目得分及權(quán)數(shù)分別求出李明和張華的加權(quán)平均數(shù),再選取平均成績(jī)高的選手即得.
解:(1)服裝項(xiàng)目的權(quán)數(shù)是,
普通話項(xiàng)目對(duì)應(yīng)扇形的圓心角是
(2)∵李明在四個(gè)項(xiàng)目所得分?jǐn)?shù)中85分出現(xiàn)兩次,次數(shù)最多
∴李明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)的眾數(shù)是85分,
∵李明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)從小到大排列為:70,80,85,85.
∴李明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)的中位數(shù)是(分)
(3)李明的得分為(分)
張華的得分為(分)
∵
∴李明的平均成績(jī)好,故選擇李明參加“美麗運(yùn)城,我為家鄉(xiāng)做代言”主題演講比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長(zhǎng)度得到點(diǎn)A,過(guò)點(diǎn)A作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(, )、Q(, )是該反比例函數(shù)圖象上的兩點(diǎn),且時(shí), ,指出點(diǎn)P、Q各位于哪個(gè)象限?并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA,OC分別位于x軸,y軸上,經(jīng)過(guò)A,C兩點(diǎn)的拋物線變x軸于另一點(diǎn)D,連接AC.請(qǐng)你只用無(wú)刻度的直尺按要求畫(huà)圖.
(1)在圖1中的拋物線上,畫(huà)出點(diǎn)E,使DE=AC;
(2)在圖2中的拋物線上,畫(huà)出拋物線的頂點(diǎn)F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是擺放在張明和趙華面前的甲和乙兩個(gè)圓柱形水槽從正面看到的圖形,甲槽中有適量的水,乙槽中有一圓柱形鐵塊(圓柱形鐵塊的下底面完全落在水槽底面,鐵塊的高度低于水槽的高度).張明將甲槽中的水勻速注入乙槽,同時(shí)趙華計(jì)時(shí)并測(cè)量,最后他們把甲、乙兩個(gè)水槽中水的深度與注水時(shí)間之間的關(guān)系畫(huà)出了如圖所示的函數(shù)圖象.請(qǐng)根據(jù)函數(shù)圖象提供的信息,解答下列問(wèn)題:
(1)如圖所示,線段表示 槽中水的深度與注水時(shí)間之間的關(guān)系;折線表示 槽中水的深度與注水時(shí)間之間的關(guān)系(以上兩空填“甲” 或“乙”);點(diǎn)的縱坐標(biāo)14表示的實(shí)際意義是 ;
(2)分別求線段、線段的函數(shù)表達(dá)式;
(3)注水多長(zhǎng)時(shí)間時(shí),甲、乙兩個(gè)水槽中水的深度相同?
(4)若乙水槽的底面積為(水槽壁的厚度不計(jì)),求乙水槽中鐵塊的體積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是小李上學(xué)用的自行車(chē),型號(hào)是24英吋(車(chē)輪的直徑為24英吋,約60厘米),為了防止在下雨天騎車(chē)時(shí)的泥水濺到身上,他想在自行車(chē)兩輪的陰影部分兩側(cè)裝上擋水的鐵皮(兩個(gè)陰影部分分別是以C、D為圓心的兩個(gè)扇形),量出四邊形ABCD中∠DAB=125°、∠ABC=115°,那么預(yù)計(jì)需要的鐵皮面積約是( )
A. 942平方厘米 B. 1884平方厘米
C. 3768平方厘米 D. 4000平方厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋中裝有5個(gè)只有顏色不同的球,其中3個(gè)黃球,2個(gè)黑球.
(1)求從袋中同時(shí)摸出的兩個(gè)球都是黃球的概率;
(2)現(xiàn)將黑球和白球若干個(gè)(黑球個(gè)數(shù)是白球個(gè)數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個(gè)球是黑球的概率是,求放入袋中的黑球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=(a﹣1)x2+3x﹣6的圖象與x軸的交點(diǎn)為A和B,若點(diǎn)B一定在坐標(biāo)原點(diǎn)和(1,0)之間,且B點(diǎn)不與原點(diǎn)和(1,0)重合,那么a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在人教版八年級(jí)上冊(cè)數(shù)學(xué)教材P53的數(shù)學(xué)活動(dòng)中有這樣一段描述:在四邊形ABCD中,若AD=CD,AB=CB,則我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”,試猜想箏形的角.對(duì)角線有什么性質(zhì)?然后選擇其中一條性質(zhì)用全等三角形的知識(shí)證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點(diǎn)F.試探究線段BE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com