【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時(shí),氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí),氣球?qū)⒈,為了安全起見,氣體的體積應(yīng)不大于多少?
【答案】(1);(2)氣壓是96KPa;(3)氣球的體積應(yīng)大于等于0.69m3.
【解析】試題分析:(1)根據(jù)題意可知p與V的函數(shù)關(guān)系式為,利用待定系數(shù)法即可求得函數(shù)解析式;
(2)直接把V=1代入解析式可求得;
(3)利用“氣球內(nèi)的氣壓小于等于140 kPa”作為不等關(guān)系解不等式求解即可.
解:(1)設(shè)p與V的函數(shù)關(guān)系式為,
將V=0.8,p=120代入上式,解得k=0.8×120=96,
所以p與V的函數(shù)關(guān)系式為;
(2)當(dāng)V=1時(shí),p=96,即氣壓是96KPa;
(3),所以氣球的體積應(yīng)大于等于0.69m3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn) A 在第二象限 ,且到X 軸的距離是3個(gè)單位長度,到Y(jié) 軸的距離是4個(gè)單位長度,則點(diǎn) A 的坐標(biāo)是_________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)擲兩個(gè)質(zhì)地均勻的骰子,觀察向上一面的點(diǎn)數(shù),兩個(gè)骰子的點(diǎn)數(shù)相同的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上的一點(diǎn),過點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
(1)試說明OE=OF;
(2)當(dāng)AE=AB時(shí),過點(diǎn)E作EH⊥BE交AD邊于H,找出與△AHE全等的一個(gè)三角形加以證明,
(3)在(2)的條件下若該正方形邊長為1,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長度的三根小木棒能構(gòu)成三角形的是( )
A. 2cm,3cm,5cm B. 7cm,4cm,2cm
C. 3cm,4cm,8cm D. 3cm,4cm,4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB和DE是直立在地面上的兩根立柱,AB=5m,某一時(shí)刻AB在陽光下的投影BC=3m.
(1)請你在圖中畫出此時(shí)DE在陽光下的投影;
(2)在測量AB的投影時(shí),同時(shí)測量出DE在陽光下的投影長為6m,請你計(jì)算DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE是⊙O的直徑,D為⊙O上一點(diǎn),過點(diǎn)D作⊙O的切線,交CE延長線于點(diǎn)A,連接DE,過點(diǎn)O作OB∥ED,交AD的延長線于點(diǎn)B,連接BC.
(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO=,求AO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小天在學(xué)習(xí)銳角三角函數(shù)中遇到這樣一個(gè)問題:在Rt△ABC中,∠C=90°,∠B=22.5°,則tan22.5°=
小天根據(jù)學(xué)習(xí)幾何的經(jīng)驗(yàn),先畫出了幾何圖形(如圖1),他發(fā)現(xiàn)22.5°不是特殊角,但它是特殊角45°的一半,若構(gòu)造有特殊角的直角三角形,則可能解決這個(gè)問題.于是小天嘗試著在CB邊上截取CD=CA,連接AD(如圖2),通過構(gòu)造有特殊角(45°)的直角三角形,經(jīng)過推理和計(jì)算使問題得到解決.
請回答:tan22.5°= .
參考小天思考問題的方法,解決問題:
如圖3,在等腰△ABC 中,AB=AC,∠A=30°,請借助△ABC,構(gòu)造出15°的角,并求出該角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com