(2013•遂寧)如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于
1
2
MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
分析:①根據(jù)作圖的過程可以判定AD是∠BAC的角平分線;
②利用角平分線的定義可以推知∠CAD=30°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);
③利用等角對等邊可以證得△ADB的等腰三角形,由等腰三角形的“三合一”的性質(zhì)可以證明點D在AB的中垂線上;
④利用30度角所對的直角邊是斜邊的一半、三角形的面積計算公式來求兩個三角形的面積之比.
解答:解:①根據(jù)作圖的過程可知,AD是∠BAC的平分線.
故①正確;

②如圖,∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC的平分線,
∴∠1=∠2=
1
2
∠CAB=30°,
∴∠3=90°-∠2=60°,即∠ADC=60°.
故②正確;

③∵∠1=∠B=30°,
∴AD=BD,
∴點D在AB的中垂線上.
故③正確;

④∵如圖,在直角△ACD中,∠2=30°,
∴CD=
1
2
AD,
∴BC=CD+BD=
1
2
AD+AD=
3
2
AD,S△DAC=
1
2
AC•CD=
1
4
AC•AD.
∴S△ABC=
1
2
AC•BC=
1
2
AC•
3
2
AD=
3
4
AC•AD,
∴S△DAC:S△ABC=
1
4
AC•AD:
3
4
AC•AD=1:3.
故④正確.
綜上所述,正確的結論是:①②③④,共有4個.
故選D.
點評:本題考查了角平分線的性質(zhì)、線段垂直平分線的性質(zhì)以及作圖-基本作圖.解題時,需要熟悉等腰三角形的判定與性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,已知四邊形ABCD是平行四邊形,DE⊥AB,DF⊥BC,垂足分別是E、F,并且DE=DF.求證:
(1)△ADE≌△CDF;
(2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,有一塊含有60°角的直角三角板的兩個頂點放在矩形的對邊上.如果∠1=18°,那么∠2的度數(shù)是
12°
12°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,△ABC的三個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B逆時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則圖中陰影部分的面積約是
7.2
7.2
.(π≈3.14,結果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=
14
,求BN的長.

查看答案和解析>>

同步練習冊答案