【題目】數(shù)學(xué)課上林老師出示了問題:如圖,ADBC,AEF=90°,AD=AB=BC=DC,B=90°,點(diǎn)E是邊BC的中點(diǎn),且EF交DCG的平分線CF于點(diǎn)F,求證:AE=EF.

同學(xué)們作了一步又一步的研究:

(1)經(jīng)過思考,小明展示了一種解題思路:如圖1,取AB的中點(diǎn)M,連接ME,則AM=EC,易證AME≌△ECF,所以AE=EF,小明的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

(2)小穎提出一個(gè)新的想法:如圖2,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

(3)小華提出:如圖3,點(diǎn)E是BC的延長線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.

【答案】見解析

【解析】解:(1)正確.理由如下:

取AB的中點(diǎn)M,連接ME,

則AM=BM=AB,

AD=AB=BC=DC,

四邊形ABCD是菱形,

∵∠B=90°,

四邊形ABCD是正方形,

∴∠BCD=90°,

∴∠DCG=90°,

CF平分DCG,

∴∠DCF=45°,

∴∠ECF=90°+45°=135°,

∵∠AEF=90°,

∴∠AEB+FEC=90°,

∵∠BAE+AEB=90°,

∴∠BAE=FEC,

點(diǎn)E是邊BC的中點(diǎn),

BE=EC=BC,

AM=EC=BM=BE,

∴△BME是等腰直角三角形,

∴∠BME=45°,

∴∠AME=135°=ECF,

AME和ECF中,,

∴△AME≌△ECF(ASA),

AE=EF

(2)正確.理由如下:在AB上取一點(diǎn)M,使AM=EC,連接ME.

AB=BC,AM=EC,

BM=BE.

∴∠BME=45°.

∴∠AME=135°.

CF是外角平分線,

∴∠DCF=45°,

∴∠ECF=135°.

∴∠AME=ECF.

∵∠AEB+BAE=90°,AEB+CEF=90°,

∴∠BAE=CEF.

AME和ECF中,,

∴△AME≌△BCF.

AE=EF.

(3)正確.理由如下:在BA的延長線上取一點(diǎn)N,使AN=CE,連接NE.

AB=BC,AN=CE,

BN=BE.

∴∠N=FCE=45°..

四邊形ABCD是正方形,

ADBE.

∴∠DAE=BEA.

∴∠NAE=CEF.

ANE和ECF中,

∴△ANE≌△ECF(ASA).

AE=EF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年7月11日是第二十二個(gè)世界人口日,本次世界人口日的主題是“面對74億人的世界”,74億人用科學(xué)記數(shù)法表示為人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1個(gè)單位長度,ABC的三個(gè)頂點(diǎn)的位置。如圖所示,

現(xiàn)將ABC平移后得EDF,使點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)E

1)畫出EDF;

2)線段BDAE有何關(guān)系? ____________;

3)連接CD、BD,則四邊形ABDC的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市九年級學(xué)生學(xué)業(yè)考試體育成績,現(xiàn)隨機(jī)抽取部分學(xué)生的體育(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)成績進(jìn)行分段統(tǒng)計(jì)如下:

根據(jù)上面提供的信息,回答下列問題:

(1)在統(tǒng)計(jì)表中,a的值為 ,b的值為 ;

(2)將統(tǒng)計(jì)圖補(bǔ)充完整;

(3)如果把成績在40分以上(含40分)定為優(yōu)秀,那么該市今年10560名九年級學(xué)生中體育成績?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(4分)有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是(

A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 (2016黑龍江大慶第10題)若x0是方程ax2+2x+c=0(a≠0)的一個(gè)根,設(shè)M=1﹣ac,N=(ax0+1)2,則M與N的大小關(guān)系正確的為(

A.M>N B.M=N C.M<N D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y1=x+m與雙曲線y2=交于點(diǎn)A、B,已知點(diǎn)A、B的橫坐標(biāo)為2和﹣1.

(1)求k的值及直線與x軸的交點(diǎn)坐標(biāo);

(2)直線y=2x交雙曲線y=于點(diǎn)C、D(點(diǎn)C在第一象限)求點(diǎn)C、D的坐標(biāo);

(3)設(shè)直線y=ax+b與雙曲線y=(ak≠0)的兩個(gè)交點(diǎn)的橫坐標(biāo)為x1、x2,直線與 x軸交點(diǎn)的橫坐標(biāo)為x0,結(jié)合(1)、(2)中的結(jié)果,猜想x1、x2、x0之間的等量關(guān)系并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣x+2分別交x、y軸于點(diǎn)A、B,點(diǎn)C為線段OA的中點(diǎn),動點(diǎn)P從坐標(biāo)原點(diǎn)出發(fā),以2個(gè)單位長度/秒的速度向終點(diǎn)A運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā),以個(gè)單位長度/秒的速度向終點(diǎn)B運(yùn)動.過點(diǎn)Q作QMAB交x軸于點(diǎn)M,動點(diǎn)P、Q同時(shí)出發(fā),其中一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時(shí)間為t秒,PM的長為y個(gè)單位長度.

(1)BCO= °;

(2)求y關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;

(3)是否存在時(shí)間t,使得以PC為直徑的D與直線QM相切?若存在,求t的值;不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,AB=AC,∠A=50°,則∠B=

查看答案和解析>>

同步練習(xí)冊答案