【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點(diǎn),交y軸于B點(diǎn),過A、B兩點(diǎn)的拋物線y=﹣x2+bx+c交x軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PG⊥AB于點(diǎn)G.求出△PFG的周長(zhǎng)最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得△ABM與△ABD的面積相等?若存在,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x2﹣2x+3;(2),(3)M1(﹣2,3),M2(,),M3(,).
【解析】試題分析:(1)將已知點(diǎn)的坐標(biāo)代入二次函數(shù)的解析式利用待定系數(shù)法確定二次函數(shù)的解析式即可;
(2)首先根據(jù)△PFG是等腰直角三角形,設(shè)P(m,-m2-2m+3)得到F(m,m+3),進(jìn)而得到PF=-m2-2m+3-m-3=-m2-3m,從而得到△PFG周長(zhǎng)為:-m2-3m+(-m2-3m),配方后即可確定其最大值;
(3)當(dāng)DM1∥AB,M3M2∥AB,且與AB距離相等時(shí),根據(jù)同底等高可以確定△ABM與△ABD的面積相等,分別求得直線DM1解析式為:y=x+5和直線M3M2解析式為:y=x+1,聯(lián)立之后求得交點(diǎn)坐標(biāo)即可.
試題解析:(1)∵直線AB:y=x+3與坐標(biāo)軸交于A(-3,0)、B(0,3),
代入拋物線解析式y=-x2+bx+c中,得:
,
∴
∴拋物線解析式為:y=-x2-2x+3;
(2)∵由題意可知△PFG是等腰直角三角形,
設(shè)P(m,-m2-2m+3),
∴F(m,m+3),
∴PF=-m2-2m+3-m-3=-m2-3m,
△PFG周長(zhǎng)為:-m2-3m+(-m2-3m),
=-(+1)(m+)2+,
∴△PFG周長(zhǎng)的最大值為:.
(3)點(diǎn)M有三個(gè)位置,如圖所示的M1、M2、M3,都能使△ABM的面積等于△ABD的面積.
此時(shí)DM1∥AB,M3M2∥AB,且與AB距離相等,
∵D(-1,4),
∴E(-1,2)、則N(-1,0)
∵y=x+3中,k=1,
∴直線DM1解析式為:y=x+5,
直線M3M2解析式為:y=x+1,
∴x+5=-x2-2x+3或x+1=-x2-2x+3,
∴x1=-1,x2=-2,x3=,x4=,
∴M1(-2,3),M2(,),M3(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的有( )
①是次多項(xiàng)式,是次多項(xiàng)式(和都是正整數(shù)),則和一定都是次多項(xiàng)式;②分式方程無解,則分式方程去分母后所得的整式方程無解;③為正整數(shù));④分式的分子和分母都乘以(或除以)同一個(gè)整數(shù),分式的值不變
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市某商場(chǎng)通過互聯(lián)網(wǎng)銷售某品牌新型臺(tái)燈,第一周的總銷售額為4000元,第二周的總銷售額為4520元,第二周比第一周多售出13盞臺(tái)燈.
(1)求每盞臺(tái)燈的售價(jià);
(2)該公司在第三周將每盞臺(tái)燈的售價(jià)降低了,并預(yù)計(jì)第三周能售出140盞燈恰逢期末考試,極大的提高了中學(xué)生使用臺(tái)燈的數(shù)量,該款臺(tái)燈在第三周的銷量比預(yù)計(jì)的140盞還多了.已知每盞臺(tái)燈的成本為16元,該公司第三周銷售臺(tái)燈的總利潤為5040元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的2017年12月份的月歷表中,任意框出表中豎列上四個(gè)相鄰的數(shù),這四個(gè)數(shù)的和可能是:
A.60B.70C.80D.90
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個(gè)“有理數(shù)轉(zhuǎn)換器”(箭頭是數(shù)進(jìn)入轉(zhuǎn)換器的路徑,方框是對(duì)進(jìn)入的數(shù)進(jìn)行轉(zhuǎn)換的轉(zhuǎn)化器)
(1)求當(dāng)小明輸入、兩個(gè)數(shù)時(shí)輸出的結(jié)果;
(2)當(dāng)輸出的結(jié)果為0時(shí),求輸入的數(shù)值(寫兩個(gè)即可);
(3)在正數(shù)、0、負(fù)數(shù)中,試探究這個(gè)“有理數(shù)轉(zhuǎn)化器”不可能輸出的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一矩形紙片放在平面直角坐標(biāo)系中,,,.動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿向終點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)秒時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同的速度沿向終點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)、其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒).
(Ⅰ)_____________,_____________;(用含的代數(shù)式表示)
(Ⅱ)當(dāng)時(shí),將沿翻折,點(diǎn)恰好落在邊上的點(diǎn)處.
①求點(diǎn)的坐標(biāo)及直線的解析式;
②點(diǎn)是射線上的任意一點(diǎn),過點(diǎn)作直線的平行線,與軸交于點(diǎn),設(shè)直線的解析式為,當(dāng)點(diǎn)與點(diǎn)不重合時(shí),為的面積,當(dāng)點(diǎn)與點(diǎn)重合時(shí),.求與之間的函數(shù)關(guān)系式,并求出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的對(duì)角線和相交于點(diǎn),正方形的邊交于點(diǎn),交于點(diǎn).
(1)求證:;
(2)如果正方形的邊長(zhǎng)為,那么正方形繞點(diǎn)轉(zhuǎn)動(dòng)的過程中,與正方形重疊部分的面積始終等于__________.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班的一次數(shù)學(xué)小測(cè)驗(yàn)中,共有20道選擇題,每題答對(duì)得相同分?jǐn)?shù),答錯(cuò)或不答扣相同分?jǐn)?shù).現(xiàn)從中抽出了四份試卷進(jìn)行分析,結(jié)果如下表:
試卷 | 答對(duì)題數(shù) | 答錯(cuò)或不答題數(shù) | 得分 |
A | 17 | 3 | 96 |
B | 14 | 6 | 72 |
C | 18 | 2 | 104 |
D | 20 | 0 | 120 |
(1)此份試卷的滿分是多少分?如果全部答錯(cuò)或者不答得多少分?
(2)如果小穎得了0分,那么小穎答對(duì)了多少道題?
(3)小慧說她在這次測(cè)驗(yàn)中得了60分,她說的對(duì)嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com