精英家教網 > 初中數學 > 題目詳情

【題目】將拋物線yx2平移,使得新位置下的拋物線與坐標軸一共有兩個交點,寫出一種符合題意的平移方法_____

【答案】y=(x+12(答案不唯一).

【解析】

若要與坐標軸只有兩個交點,只需拋物線與x軸相切即可,最簡單的辦法沿x軸平移即可.

解:若要拋物線與坐標軸只有兩個交點,拋物線與x軸相切即可.

將拋物線yx2向左平移1個單位即可,此時拋物線的解析式為y=(x+12

故答案是:y=(x+12(答案不唯一).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】x3倍減去2的差不大于0,列出不等式為(  )

A. 3x2≤0 B. 3x2≥0 C. 3x20 D. 3x20

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線分別從A、B兩地同時出發(fā)勻速前往C地(B在A、C兩地的途中).設甲、乙兩車距A地的路程分別為y、y(千米),行駛的時間為x(小時),y、y與x之間的函數圖象如圖所示.

(1)直接寫出y、y與x之間的函數表達式;
(2)如圖,過點(1,0)作x軸的垂線,分別交y、y的圖象于點M,N.求線段MN的長,并解釋線段MN的實際意義;
(3)在乙行駛的過程中,當甲、乙兩人距A地的路程差小于30千米時,求x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數軸上A點表示原點左邊距離原點3個單位長度、B點在原點右邊距離原點2個單位長度,那么兩點所表示的有理數的積是。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在我市開展“陽光”活動中,為解中學生活動開展情況,隨機抽查全市八年級部分同學1分鐘,將抽查結果進行,并繪制兩個不完整圖.請根據圖中提供信息,解答問題:

(1)本次共抽查多少名學生?
(2)請補全直方圖空缺部分,直接寫扇形圖中范圍135≤x<155所在扇形圓心角度數.
(3)若本次抽查中,在125次以上(含125次)為優(yōu)秀,請你估計全市8000名八年級學生中有多少名學生成績?yōu)閮?yōu)秀?
(4)請你根據以上信息,對我市開展學生活動談談自己看法或建議

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次數學測驗中,某小組七位同學的成績分別是:90,85,90,95,90,85,95.則這七個數據的眾數是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平行線概念:在______________,不相交的兩條__________叫做平行線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線(a0)與x軸交于A(4,0)、B(﹣1,0)兩點,過點A的直線y=﹣x+4交拋物線于點C.

(1)求此拋物線的解析式;

(2)在直線AC上有一動點E,當點E在某個位置時,使BDE的周長最小,求此時E點坐標;

(3)當動點E在直線AC與拋物線圍成的封閉線A→C→B→D→A上運動時,是否存在使BDE為直角三角形的情況,若存在,請直接寫出符合要求的E點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4

(1)求經過A、B、C三點的拋物線的解析式;

(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.

查看答案和解析>>

同步練習冊答案