【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E,B,E是半圓弧的三等分點,弧AB的長為,則圖中陰影部分的面積為( 。
A. 6﹣ B. 9﹣ C. ﹣ D. 6﹣
【答案】C
【解析】
首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出BC,AC的長,利用S△ABC-S扇形BOE=圖中陰影部分的面積求出即可.
解:連接BD,BE,BO,EO,
∵B,E是半圓弧的三等分點,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=∠EBA=30°,
∴BE∥AD,
弧AB的長為,
∴=
解得:R=2,
∴AB=ADcos30°=2,
∴BC=AB=,
∴AC===3,
∴S△ABC=×BC×AC=××3=,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面積相等,
∴圖中陰影部分的面積為:S△ABC-S扇形BOE=-= -.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以x=1為對稱軸的拋物線y=ax2+bx+c的圖象與x軸交于點A,點B(﹣1,0),與y軸交于點C(0,4),作直線AC.
(1)求拋物線解析式;
(2)點P在拋物線的對稱軸上,且到直線AC和x軸的距離相等,設(shè)點P的縱坐標(biāo)為m,求m的值;
(3)點M在y軸上且位于點C上方,點N在直線AC上,點Q為第一象限內(nèi)拋物線上一點,若以點C、M、N、Q為頂點的四邊形是菱形,請直接寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算:(﹣2ab)2+a2(a+2b)(a﹣2b)+a8÷a2
(2)解方程:
(3)先化簡,再求值:÷,其中x=﹣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明設(shè)計用手電筒來測量某古城墻高度的示意圖.在地面上點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測得AB=1.2米,BP=1.8米,PD=18米,那么該古城墻的高度是( 。
A. 6米 B. 8米 C. 12米 D. 24米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連結(jié)AC交⊙O于點F.
(1)AB與AC的大小有什么關(guān)系?請說明理由;
(2)若AB=8,∠BAC=45°,求:圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P、O、Q為頂點,且以點Q為直角頂點的三角形與△AOH全等,則符合條件的點A的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明開著汽車在平坦的公路上行駛,前放出現(xiàn)兩座建筑物A、B(如圖),在(1)處小穎能看到B建筑物的一部分,(如圖),此時,小明的視角為30°,已知A建筑物高25米.
(1)請問汽車行駛到什么位置時,小明剛好看不到建筑物B?請在圖中標(biāo)出這點.
(2)若小明剛好看不到B建筑物時,他的視線與公路的夾角為45°,請問他向前行駛了多少米?( 精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標(biāo);
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com