【題目】如圖,在平面直角坐標(biāo)系xoy中,矩形OABC的頂點(diǎn)B坐標(biāo)為(12,5),點(diǎn)D CB邊上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B,以AD為邊作正方形ADEF,連BEBF,在點(diǎn)D運(yùn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄恳韵聠?wèn)題:

(1)ABF的面積是否改變,如果不變,求出該定值;如果改變,請(qǐng)說(shuō)明理由;

(2)BEF為等腰三角形,求此時(shí)正方形ADEF的邊長(zhǎng);

(3)設(shè)E(x,y),直接寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍.

【答案】(1)不變,,理由見(jiàn)解析;(2)5;(3)y=-x+225x17

【解析】

1)由“SAS”可證△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面積;

2)分三種情況討論,由等腰三角形的性質(zhì)和勾股定理可求正方形ADEF的邊長(zhǎng);

3)由全等三角形的性質(zhì),DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y關(guān)于x的函數(shù)關(guān)系式.

解:(1)作FHABAB延長(zhǎng)線于H,

正方形ADEF中,AD=AF,∠DAF=90°,

∴∠DAH+∠FAH=90°.

∵∠H=90°,

∴∠FAH+∠AFH=90°

∴∠DAH=∠AFH,

矩形OABC中,AB=5,∠ABD=90°,

∴∠ABD=∠H∴△ABD≌△FHA,

FH=AB=5,

;

(2)①當(dāng)EB=EF時(shí),作EGCB

正方形ADEF中,ED=EF,

ED=EB ,

DB=2DG,

同(1)理得ABD≌△GDE,

DG=AB=5 DB=10,

;

當(dāng)EB=BF時(shí),BEF=∠BFE,

正方形ADEF中,ED=AF,DEF=∠AFE=90°,

∴∠BED=∠BFA

∴△ABF≌△DBE,

BD=AB=5 ,

矩形OABC中,ABD=90°

;

當(dāng)FB=FE時(shí),作FQAB,

同理得BQ=AQ=, BD=AQ=,

;

3)當(dāng)5≤x≤12時(shí),如圖,


由(2)可知DH=AB=5,EH=DB,且Ex,y),

y=EH+5=DB+5,x=12-DB+DH=17-DB,

y=22-x,

當(dāng)12x≤17時(shí),如圖,


同理可得:x=12-DB+5=17-DBy=DB+5,

y=22-x

綜上所述:當(dāng)5≤x≤17時(shí),y=22-xy=-x+225x17.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式,并解答問(wèn)題:

;

;

;……

1 .

2)運(yùn)用公式求的結(jié)果;

3)小明喜歡閱讀《海底兩萬(wàn)里》這本書(shū),書(shū)的頁(yè)碼是連續(xù)的正整數(shù)12,34,……910,又一次他將已經(jīng)讀過(guò)的頁(yè)碼按照順序相加時(shí),不小心把其中一個(gè)頁(yè)碼加了兩次,結(jié)果和恰好等于2018,則加了兩次的頁(yè)碼是第 頁(yè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,的垂直平分線,交,則以下結(jié)論不正確的是( )

A. B.

C. 是等腰三角形D. 射線的角平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車(chē)司機(jī)小李昨天下午的營(yíng)運(yùn)全是在東西走向的人民大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車(chē)?yán)锍倘缦拢?/span>+15,-2,+3,-1,+10,-3,-2.

(1)將最后一名乘客送往目的地時(shí),小李距離下午出車(chē)時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?

(2)若汽車(chē)耗油量為,這天下午小李共耗油多少L

(3)小李所開(kāi)的出租車(chē)按物價(jià)部門(mén)規(guī)定,起步價(jià)(不超過(guò)3km)5元,超過(guò)3km超過(guò)的部分每千米收費(fèi)1元,小李這天下午收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在軸和y軸上.OA邊上選取適當(dāng)?shù)狞c(diǎn)E,連接CE,將△EOC沿CE折疊。

1)如圖,當(dāng)點(diǎn)O落在AB邊上的點(diǎn)D處時(shí),點(diǎn)E的坐標(biāo)為 ;

2)如圖,當(dāng)點(diǎn)O落在矩形OABC內(nèi)部的點(diǎn)D處時(shí),過(guò)點(diǎn)EEG軸交CD于點(diǎn)H,交BC于點(diǎn)G.求證:EHCH;

3)在(2)的條件下,設(shè)Hm,n),寫(xiě)出mn之間的關(guān)系式 ;

4)如圖,將矩形OABC變?yōu)檎叫危?/span>OC10,當(dāng)點(diǎn)EAO中點(diǎn)時(shí),點(diǎn)O落在正方形OABC內(nèi)部的點(diǎn)D處,延長(zhǎng)CDAB于點(diǎn)T,求此時(shí)AT的長(zhǎng)度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知R tABC,ABC90°,以直角邊AB為直徑作O,交斜邊AC于點(diǎn)D,連結(jié)BD

1)若AB3,BC4,求邊BD的長(zhǎng);

2)取BC的中點(diǎn)E,連結(jié)ED,試證明ED與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷(xiāo)售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球多15元,王老師從該網(wǎng)店購(gòu)買(mǎi)了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過(guò)8780元購(gòu)進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.

①若設(shè)購(gòu)進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?

②若所購(gòu)進(jìn)羽毛球均可全部售出,請(qǐng)求出網(wǎng)店所獲利潤(rùn)W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說(shuō)明當(dāng)m為何值時(shí)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、cRtABCRtBED邊長(zhǎng),易知AE=c這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱(chēng)為“勾系一元二次方程”.

請(qǐng)解決下列問(wèn)題

寫(xiě)出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅紅有5張寫(xiě)著以下數(shù)字的卡片,請(qǐng)你按要求抽出卡片,解決下列問(wèn)題:

1)從中取出2張卡片,使這2張卡片上的數(shù)字相乘的積最大,最大值是________.

2)從中取出2張卡片,使這2張卡片上的數(shù)字相除的商最小,最小值是________.

3)從中取出0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,(注:每個(gè)數(shù)字只能對(duì)用一次,如)請(qǐng)另寫(xiě)出兩種符合要求的運(yùn)算式子.

查看答案和解析>>

同步練習(xí)冊(cè)答案