【題目】如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)在這條拋物線(xiàn)的對(duì)稱(chēng)軸右邊的圖象上有一點(diǎn)B,使AOB的面積等于6,求點(diǎn)B的坐標(biāo);

(3)對(duì)于(2)中的點(diǎn)B,在此拋物線(xiàn)上是否存在點(diǎn)P,使POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出POB的面積;若不存在,請(qǐng)說(shuō)明理由.

【答案】解:(1)函數(shù)的圖象與x軸相交于O,0=k+1,k=﹣1。

這個(gè)二次函數(shù)的解析式為y=x2﹣3x。

(2)如圖,過(guò)點(diǎn)B做BDx軸于點(diǎn)D,

令x2﹣3x=0,解得:x=0或3。AO=3。

∵△AOB的面積等于6,AOBD=6。BD=4。

點(diǎn)B在函數(shù)y=x2﹣3x的圖象上,

4=x2﹣3x,解得:x=4或x=﹣1(舍去)。

頂點(diǎn)坐標(biāo)為:( 1.5,﹣2.25),且2.25<4,

x軸下方不存在B點(diǎn)。

點(diǎn)B的坐標(biāo)為:(4,4)

(3)存在。

點(diǎn)B的坐標(biāo)為:(4,4),∴∠BOD=45°,。

POB=90°,POD=45°。

設(shè)P點(diǎn)坐標(biāo)為(x,x2﹣3x)。

。

,解得x=4 或x=0(舍去)。此時(shí)不存在點(diǎn)P(與點(diǎn)B重合)。

,解得x=2 或x=0(舍去)。

當(dāng)x=2時(shí),x2﹣3x=﹣2。

點(diǎn)P 的坐標(biāo)為(2,﹣2)。

POB=90°,∴△POB的面積為: POBO=××=8。

解析(1)將原點(diǎn)坐標(biāo)代入拋物線(xiàn)中即可求出k的值,從而求得拋物線(xiàn)的解析式。

(2)根據(jù)(1)得出的拋物線(xiàn)的解析式可得出A點(diǎn)的坐標(biāo),也就求出了OA的長(zhǎng),根據(jù)OAB的面積可求出B點(diǎn)縱坐標(biāo)的絕對(duì)值,然后將符合題意的B點(diǎn)縱坐標(biāo)代入拋物線(xiàn)的解析式中即可求出B點(diǎn)的坐標(biāo),然后根據(jù)B點(diǎn)在拋物線(xiàn)對(duì)稱(chēng)軸的右邊來(lái)判斷得出的B點(diǎn)是否符合要求即可

(3)根據(jù)B點(diǎn)坐標(biāo)可求出直線(xiàn)OB的解析式,由于OBOP,由此可求出P點(diǎn)的坐標(biāo)特點(diǎn),代入二次函數(shù)解析式可得出P點(diǎn)的坐標(biāo).求POB的面積時(shí),求出OB,OP的長(zhǎng)度即可求出BOP的面積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+2x+3x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D為拋物線(xiàn)的頂點(diǎn),點(diǎn)C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為E,點(diǎn)GF分別在xy軸上,則四邊形EDFG周長(zhǎng)的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)x0)的圖象經(jīng)過(guò)矩形OABC對(duì)角線(xiàn)的交點(diǎn)M,分別與ABBC相交于點(diǎn)D、E.若四邊形ODBE的面積為6,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是圓O直徑CA延長(zhǎng)線(xiàn)上的一點(diǎn),PB切圓O于點(diǎn)B,點(diǎn)D是圓上的一點(diǎn),連接ABAD,BDCD,PB=BC

1)求證:OP=2OC

2)若OC=5,sinDCA=,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國(guó)文明城市之后,又準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類(lèi)的溫馨提示牌和垃圾箱,若購(gòu)買(mǎi)2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.

(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?

(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買(mǎi)溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過(guò)10000元,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線(xiàn)ykx+bkb為常數(shù))分別與x軸、y軸交于點(diǎn)A(﹣4,0),B03),拋物線(xiàn)y=﹣x2+4x+1y軸交于點(diǎn)C,點(diǎn)E在拋物線(xiàn)y=﹣x2+4x+1的對(duì)稱(chēng)軸上移動(dòng),點(diǎn)F在直線(xiàn)AB上移動(dòng),CE+EF的最小值是( 。

A.2B.4C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大圓的弦AB、AC分別切小圓于點(diǎn)M、N

1)求證:AB=AC;

2AB8,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=﹣x2+2mxm2+m

1)求拋物線(xiàn)的對(duì)稱(chēng)軸(用含m的式子表示);

2)如果該拋物線(xiàn)的頂點(diǎn)在直線(xiàn)y2x4上,求m的值.

3)點(diǎn)A的坐標(biāo)為(﹣2,﹣8),點(diǎn)A關(guān)于點(diǎn)(0,﹣9)的對(duì)稱(chēng)點(diǎn)為B點(diǎn).

①寫(xiě)出點(diǎn)B坐標(biāo).

②若該拋物線(xiàn)與線(xiàn)段AB有公共點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,對(duì)角線(xiàn)相交于點(diǎn),平分于點(diǎn),,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案