(2006•臨汾)某公司試銷一種成本為30元/件的新產品,按規(guī)定試銷時的銷售單價不低于成本單價,又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價x(元/件)滿足下表中的函數(shù)關系.
x(元/件)3540455055
y(件)550500450400350
(1)試求y與x之間的函數(shù)表達式;
(2)設公司試銷該產品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達式(毛利潤=銷售總價-成本總價);
(3)當銷售單價定為多少時,該公司試銷這種產品每天獲得的毛利潤最大?最大毛利潤是多少?此時每天的銷售量是多少?
【答案】分析:(1)方法一,根據圖中表格可知:每天的銷售單價x增加5元,銷售量y減少50件,故每天的銷售量y和銷售單價x之間為一次函數(shù)的關系,故可用待定系數(shù)法將y與x之間的函數(shù)表達式求出;方法二,設y與x之間滿足二次函數(shù)表達式,將表格中任意三個值代入,可將該函數(shù)求出;
(2)方法一,根據:毛利潤=(每件產品的銷售價-成本)×銷售量,可求出S與x之間的函數(shù)表達式;方法二,根據:毛利潤=銷售總價-成本總價,也可求出S與x之間的函數(shù)表達式;
(3)由(2)知,當x=-時,二次函數(shù)能取得極值.
解答:解:(1)解法1:設y與x之間的函數(shù)關系滿足y=kx+b
把x=40,y=500;x=50,y=400
分別代入上式得:
,
解得
∴y=-10x+900
∵表中其它對應值都滿足y=-10x+900
∴y與x之間的函數(shù)關系為一次函數(shù),且函數(shù)表達式為y=-10x+900(30≤x≤80);
解法2:設y與x之間的函數(shù)關系滿足y=ax2+bx+c
把x=35,y=550;x=40,y=500;x=50,y=400分別代入上式

解,得∴y=-10x+900
∵表中其它對應值都滿足y=-10x+900
∴y與x之間的函數(shù)關系為一次函數(shù),且函數(shù)表達式為y=-10x+900(30≤x≤80);

(2)方法1:毛利潤S=(x-30)•y
=(x-30)(-10x+900)
=-10x2+1200x-27000(30≤x≤80)
方法2:毛利潤S=xy-30y
=x•(-10x+900)-30×(-10x+900)
=-10x2+1200x-27000(30≤x≤80);

(3)在S=-10x2+1200x-27000中
∵a=-10<0,∴當
∴S最大=-10×602+1200×60-27000=9000(元)
此時每天的銷售量為:y=-10×60+900=300(件).
∴當銷售單價定為60元/件時,該公司試銷這種產品每天獲得的毛利潤最大,最大毛利潤是9000元,此時每天的銷售量是300件.
點評:本題主要考查待定系數(shù)法,函數(shù)、方程的數(shù)學思想,考查分析、探究、解決實際問題的能力及數(shù)學應用意識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•臨汾)某公司試銷一種成本為30元/件的新產品,按規(guī)定試銷時的銷售單價不低于成本單價,又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價x(元/件)滿足下表中的函數(shù)關系.
x(元/件)3540455055
y(件)550500450400350
(1)試求y與x之間的函數(shù)表達式;
(2)設公司試銷該產品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達式(毛利潤=銷售總價-成本總價);
(3)當銷售單價定為多少時,該公司試銷這種產品每天獲得的毛利潤最大?最大毛利潤是多少?此時每天的銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省臨汾市中考數(shù)學試卷(解析版) 題型:解答題

(2006•臨汾)某公司試銷一種成本為30元/件的新產品,按規(guī)定試銷時的銷售單價不低于成本單價,又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價x(元/件)滿足下表中的函數(shù)關系.
x(元/件)3540455055
y(件)550500450400350
(1)試求y與x之間的函數(shù)表達式;
(2)設公司試銷該產品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達式(毛利潤=銷售總價-成本總價);
(3)當銷售單價定為多少時,該公司試銷這種產品每天獲得的毛利潤最大?最大毛利潤是多少?此時每天的銷售量是多少?

查看答案和解析>>

同步練習冊答案