【題目】如果9x2+kx+25是一個(gè)完全平方式,那么k的值是

【答案】±30
【解析】解:∵(3x±5)2=9x2±30x+25,

∴在9x2+kx+25中,k=±30.

故答案是:±30.

【考點(diǎn)精析】本題主要考查了完全平方公式的相關(guān)知識(shí)點(diǎn),需要掌握首平方又末平方,二倍首末在中央.和的平方加再加,先減后加差平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,公路AB為東西走向,在點(diǎn)A北偏東36.5°方向上,距離5千米處是村莊M;在點(diǎn)A北偏東53.5°方向上,距離10百米處是村莊N(參考數(shù)據(jù);sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75,sin23.6°=0.4,cos66.4°=0.4,tan21.8°=0.4).

(1)求M,N兩村之間的距離;

(2)試問村莊N在村莊M的什么方向上?(精確到0.1度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖形似w的函數(shù)是由拋物線y1的一部分,其表達(dá)式為:y1=(x22x3)(x3)以及拋物線y2的一部分所構(gòu)成的,其中曲線y2與曲線y1關(guān)于直線x=3對(duì)稱,A、B是曲線y1與x軸兩交點(diǎn)(A在B的左邊),C是曲線y1與y軸交點(diǎn).

(1)求A,B,C三點(diǎn)的坐標(biāo)和曲線y2的表達(dá)式;

(2)我們把其中一條對(duì)角線被另一條對(duì)角線垂直且平分的四邊形稱為箏形.過點(diǎn)C作x軸的平行線與曲線y1交于另一個(gè)點(diǎn)D,連接AD.試問:在曲線y2上是否存在一點(diǎn)M,使得四邊形ACDM為箏形?若存在,計(jì)算出點(diǎn)M的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(﹣20)+17的結(jié)果是(
A.﹣3
B.3
C.﹣2017
D.2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計(jì)算正確的是( )
A.2a2+3a2=5a4
B.(﹣2ab)3=﹣6ab3
C.(3a+b)(3a﹣b)=9a2﹣b2
D.a3(﹣2a)=﹣2a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于三角形的外心,下列說法錯(cuò)誤的是( )

A. 它到三角形三個(gè)頂點(diǎn)的距離相等 B. 它是三角形外接圓的圓心

C. 它是三角形三條邊垂直平分線的交點(diǎn) D. 它一定在三角形的外部

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A在數(shù)軸上表示+2,從A點(diǎn)沿?cái)?shù)軸向左平移3個(gè)單位到點(diǎn)B,則點(diǎn)B所表示的數(shù)是( )

A. ﹣1 B. 3 C. 5 D. 1 或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=(x+2)2﹣5向左平移2個(gè)單位,再向上平移5個(gè)單位,平移后所得拋物線的解析式為( 。

A. y=(x+4)2 B. yx2

C. yx2﹣10 D. y=(x+4)2﹣10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:如圖,邊長(zhǎng)為2的正方形ABCD,點(diǎn)P在射線BC上,將ABP沿AP向右翻折,得到AEP,DE所在直線與AP所在直線交于點(diǎn)F.

探究:(1)如圖1,當(dāng)點(diǎn)P在線段BC上時(shí),BAP=30°,求AFE的度數(shù);若點(diǎn)E恰為線段DF的中點(diǎn)時(shí),請(qǐng)通過運(yùn)算說明點(diǎn)P會(huì)在線段BC的什么位置?并求出此時(shí)AFD的度數(shù).

歸納:(2)若點(diǎn)P是線段BC上任意一點(diǎn)時(shí)(不與B,C重合),AFD的度數(shù)是否會(huì)發(fā)生變化?試證明你的結(jié)論;

猜想:(3)如圖2,若點(diǎn)P在BC邊的延長(zhǎng)線上時(shí),AFD的度數(shù)是否會(huì)發(fā)生變化?試在圖中畫出圖形,并直接寫出結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案