如圖,矩形ABCD中,AB=4cm,BC=8cm,動點(diǎn)M從點(diǎn)D出發(fā),按折線DCBAD方向以2cm/s的速度運(yùn)動,動點(diǎn)N從點(diǎn)D出發(fā),按折線DABCD方向以1cm/s的速度運(yùn)動.
(1)若動點(diǎn)M、N同時出發(fā),經(jīng)過幾秒鐘兩點(diǎn)相遇?
(2)若點(diǎn)E在線段BC上,BE=2cm,動點(diǎn)M、N同時出發(fā)且相遇時均停止運(yùn)動,那么點(diǎn)M運(yùn)動到第幾秒鐘時,與點(diǎn)A、E、M、N恰好能組成平行四邊形?

【答案】分析:(1)相遇時,M和N所經(jīng)過的路程正好是矩形的周長,在速度已知的情況下,只需列方程即可解答.
(2)因為按照N的速度和所走的路程,在相遇時包括相遇前,N一直在AD上運(yùn)動,當(dāng)點(diǎn)M運(yùn)動到BC邊上的時候,點(diǎn)A、E、M、N才可能組成平行四邊形,其中有兩種情況,即當(dāng)M到C點(diǎn)時以及在BC上時,所以要分情況討論.
解答:解:(1)設(shè)t秒時兩點(diǎn)相遇,則有t+2t=24,
解得t=8.
答:經(jīng)過8秒兩點(diǎn)相遇. (4分)
(2)由(1)知,點(diǎn)N一直在AD上運(yùn)動,所以當(dāng)點(diǎn)M運(yùn)動到BC邊上的時候,點(diǎn)A、E、M、N才可能組成平行四邊形,
設(shè)經(jīng)過x秒,四點(diǎn)可組成平行四邊形.分兩種情形:
當(dāng)點(diǎn)M運(yùn)動到E的右邊時:①8-x=10-2x,解得x=2,(4分)
當(dāng)點(diǎn)M運(yùn)動到E的左邊時,②8-x=2x-10,解得x=6,(4分)
答:第2秒或6秒鐘時,點(diǎn)A、E、M、N組成平行四邊形.(1分)
點(diǎn)評:此題主要考查了平行四邊形的判定,難易程度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案