【題目】如圖所示,菱形ABOC,其一邊OBx軸上,將菱形ABOC繞點B順時針旋轉(zhuǎn)75°FBDE的位置,若BO2,∠A120°,則點E的坐標(biāo)為( 。

A. B. C. D.

【答案】A

【解析】

CCGOBG,過EEHOBH,根據(jù)菱形的性質(zhì)得到∠ABO60°,解直角三角形即可得到結(jié)論.

解:過CCGOBG,過EEHOBH

在菱形ABOC中,∵∠A120°,ACBO

∴∠ABO60°,

∴∠CBO30°

BOCO2,∠COG60°

RtCOG中,OGOCcos60°1

BG1+23,

RtBCG中,BC,

∵∠HBE75°30°45°

RtBHE中,BHHEBEsin45°

OH,

∴點E的坐標(biāo)為(,).

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校圖書館為了滿足同學(xué)們閱讀課外書的需求,計劃購進甲、乙兩種圖書共100套,其中甲種圖書每套120元,乙種圖書每套80元.設(shè)購買甲種圖書的數(shù)量套.

(1)按計劃用11000元購進甲、乙兩種圖書時,問購進這甲、乙兩種圖書各多少套?

(2)若購買甲種圖書的數(shù)量要不少于乙種圖書的數(shù)量的,購買兩種圖書的總費用為元,求出最少總費用.

(3)圖書館在不增加購買數(shù)量的情況下,增加購買丙種圖書,要求甲種圖書與丙種圖書的購買費用相同.丙種圖書每套100元,總費用比(2)中最少總費用多出1240元,請直接寫出購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸交于點A(2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連接BO,若SAOB4

(1)求該反比例函數(shù)的解析式和直線AB的解析式;

(2)若直線AB與雙曲線的另一交點為D點,求△ODB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰ABC中,AC=BC,以BC為直徑的O分別與AB,AC相交于點D,E,過點D作DFAC,垂足為點F.

(1)求證:DF是O的切線;

(2)分別延長CB,F(xiàn)D,相交于點G,A=60°,O的半徑為6,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x0)的圖象交于點P(n,2),與x軸交于點A(4,0),與y軸交于點C,PBx軸于點B,點A與點B關(guān)于y軸對稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點C為線段AP的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以BC為直徑的⊙O中,點A、E為圓周上兩點,過點AADBC,垂足為D,作AFCE的延長線于點F,垂足為F,連接AC、AO,已知BDEF,BC4

1)求證:∠ACB=∠ACF

2)當(dāng)∠AEF   °時,四邊形AOCE是菱形;

3)當(dāng)AC   時,四邊形AOCE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+6x軸、y軸分別交于AB兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠BAC>90°,點DBC的中點,點EAC上,將CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。

A. AE=EF B. AB=2DE

C. ADFADE的面積相等 D. ADEFDE的面積相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC中,ABAC.以C為圓心,CB的長為半徑作弧,交AB于點D.分別以B、D為圓心,大于BD的長為半徑作弧,兩弧交于點E.作射線CEAB于點M.分別以A、C為圓心,CMAM的長為半徑作弧,兩弧交于點N.連接ANCN

1)求證:ANCN

2)若AB5,tanB3,求四邊形AMCN的面積.

查看答案和解析>>

同步練習(xí)冊答案