【題目】如圖,ABC,BAC=40°,ACB=60°DABC外一點,DA平分∠BAC,且CBD=50°,則∠DCB的度數(shù)是_______.

【答案】60°

【解析】

如圖,延長ABP,延長ACQ,作DH⊥APHDE⊥AQE,DF⊥BCF.想辦法證明DE=DF,推出DC平分∠QCB即可解決問題.

解:如圖,延長ABP,延長ACQ,作DHAPH,DEAQE,DFBCF

∵∠PBC=BAC+ACB=40°+60°=100°,∠CBD=50°
∴∠DBC=DBH,
DFBC,DHBP,
DF=DH
又∵DA平分∠PAQ,DHPA,DEAQ,
DE=DH
DE=DF
CD平分∠QCB,
∵∠QCB=180°-60°=120°
∴∠DCB=60°
故答案為60°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形△ABCD中,AB2AD1,ECD中點,PAB邊上一動點(含端點),FCP中點,則△CEF的周長最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推進中原經(jīng)濟區(qū)建設(shè),促進中部地區(qū)崛起,我省汽車領(lǐng)頭企業(yè)鄭州日產(chǎn)實行技術(shù)革新,在保證原有生產(chǎn)線的同時,引進新的生產(chǎn)線,今年某月公司接到裝配汽車2400輛的訂單,定價為每輛6萬元,若只采用新的生產(chǎn)線生產(chǎn),則與原生產(chǎn)線相比可以提前8天完成訂單任務,已知新的生產(chǎn)線使汽車裝配效率比以前提高了

1)求原生產(chǎn)線每天可以裝配多少輛汽車?

2)已知原生產(chǎn)線裝配一輛汽車需要成本5萬元,新生產(chǎn)線比原生產(chǎn)線每輛節(jié)省1萬元,于是公司決定兩條生產(chǎn)線同時生產(chǎn),且新生產(chǎn)線裝配的數(shù)量最多是原生產(chǎn)線裝配數(shù)量的2倍,問:如何分配兩條生產(chǎn)線才能使獲得的利潤最大,最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年我市的臍橙喜獲豐收,臍橙一上市,水果店的陳老板用2400元購進一批臍橙,很快售完;陳老板又用6000元購進第二批臍橙,所購件數(shù)是第一批的2倍,但進價比第一批每件多了20元.

1)第一批臍橙每件進價多少元?

2)陳老板以每件120元的價格銷售第二批臍橙,售出60%后,為了盡快售完,決定打折促銷,要使第二批臍橙的銷售總利潤不少于480元,剩余的臍橙每件售價最低打幾折?(利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場欲購進一種商品,當購進這種商品至少為10kg,但不超過30kg時,成本y(元/kg)與進貨量x(kg)的函數(shù)關(guān)系如圖所示.

(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

(2)若該商場購進這種商品的成本為9.6元/kg,則購進此商品多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生環(huán)保意識,某中學組織全校2000名學生參加環(huán)保知識大賽,比賽成績均為整數(shù).從中抽取部分同學的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:

(1)所抽取的樣本容量為
(2)若抽取的學生成績用扇形圖來描述,則表示“第三組(79.5~89.5 )”的扇形的圓心角度數(shù)為多少?
(3)如果成績在80分以上(含80分)的同學可以獲獎,請估計該校有多少名同學獲獎.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題

(1)在圖中建立正確的平面直角坐標系;

(2)根據(jù)所建立的坐標系,寫出BC的坐標;

(3)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EPCD交于點G,點HMN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yax+b的圖象與反比例函數(shù)y圖象相交于點A(﹣1,2)與點B(﹣4,n).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求△AOB的面積.

3)在第二象限內(nèi),求不等式ax+b的解集(請直接寫出答案).

查看答案和解析>>

同步練習冊答案