【題目】如圖,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm.點(diǎn)P從點(diǎn)A出發(fā)沿AB方向向點(diǎn)B運(yùn)動,速度為1cm/s,同時點(diǎn)Q從點(diǎn)B出發(fā)沿B→C→A方向向點(diǎn)A運(yùn)動,速度為2cm/s.當(dāng)一個動點(diǎn)到達(dá)終點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時間為t(s).

(1)當(dāng)t為何值時,△APC為等腰三角形.
(2)當(dāng)點(diǎn)Q在線段BC上運(yùn)動時,△PBQ的面積為S(cm2),寫出S與t之間的函數(shù)關(guān)系.
(3)當(dāng)點(diǎn)Q在線段BC上運(yùn)動時,是否存在某一時刻t,使SPBQ:S四邊形APQC=5:3?若存在,求出t值;若不存在,說明理由.
(4)在運(yùn)動過程中,是否存在某一時刻t,使BQ平分∠ABC?若存在,求出t的值;若不存在,請說明理由.

【答案】
(1)解:①當(dāng)AP=PB時,∵∠ACB=90°,

∴CP=PA=PB,

∴t=5,

②當(dāng)AC=AP時,t=8,

∴t=5s或8s時,△APC是等腰三角形


(2)解:當(dāng)點(diǎn)Q在邊BC上運(yùn)動時,過點(diǎn)Q作QH⊥AB于H,

∵AP=xcm,

∴BP=(10﹣x)cm,BQ=2xcm,

∵△QHB∽△ACB,

=

∴QH= xcm,

y= BPQH= (10﹣x) x=﹣ x2+8x(0<x≤3)


(3)解:存在.∵SPBQ:S四邊形APQC=5:3,

∴﹣ x2+8x= × ×6×8,

解得x= ,

∴t= s或 s時,SPBQ:S四邊形APQC=5:3


(4)解:存在.如圖作QH⊥AB于H.

∵∠QBC=∠QBA,QC⊥BC,QH⊥AB,

∴QC=QH=2t﹣6,AQ=14﹣2t,

∵∠A=∠A,∠AHQ=∠C=90°,

∴△AQH∽△ABC,

= ,

= ,

∴t= ,

∴t= s時,BQ平分∠ABC


【解析】(1)分兩種情形討論求解①當(dāng)AP=PB時,可以證明CP=PA=PB,t=5,.②當(dāng)AC=AP時;t=5,t=5s或8s時,△APC是等腰三角形
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動時,過點(diǎn)Q作QH⊥AB于H,由△QHB∽△ACB,推出 QHAC=QBAB 可得QH的長度, 根據(jù)y= 12 BPQH,列出式子即可;
(3)存在.由S△PBQ:S四邊形APQC=5:3,可得關(guān)于x的方程,解方程即可解決問題;
(4)存在.如圖作QH⊥AB于H.首先得出QC=QH=2t-6,AQ=14﹣2t,由△ AQH∽△ABC,可得 AQAB=QHBC ,從而列出方程, 解方程即可解決問題;
【考點(diǎn)精析】關(guān)于本題考查的三角形的面積和相似三角形的判定與性質(zhì),需要了解三角形的面積=1/2×底×高;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,的角平分線與邊交于點(diǎn),的角平分線交直線于點(diǎn).

1)若點(diǎn)在四邊形的內(nèi)部,

①如圖,若,,則_______°;

②如圖,試探索、之間的數(shù)量關(guān)系,并將你的探索過程寫下來.

2)如圖,若點(diǎn)是四邊形的外部,請你直接寫出、之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,分別是邊上的點(diǎn),交于點(diǎn),且.

1)如圖,求證:

2)如圖,過點(diǎn),交于點(diǎn) ,求證

3)如圖,在(2)的條件下,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題

為了保護(hù)環(huán)境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有A、B兩種型號,其中每臺的價格,年省油量如下表:

A

B

價格(萬元/臺)

a

b

節(jié)省的油量(萬升/年)

2.4

2

經(jīng)調(diào)查,購買一臺A型車比購買一臺B型車多20萬元,購買2A型車比購買3B型車少60萬元.

1)請求出ab

2)若購買這批混合動力公交車每年能節(jié)省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1 ∠2∠B ∠C,可推得AB∥CD.理由如下:

∵∠1 ∠2(已知),

∠1 ∠CGD______________ _________),

∴∠2 ∠CGD(等量代換).

∴CE∥BF___________________ ________).

∴∠ ∠C__________________________).

∵∠B ∠C(已知),

∴∠ ∠B(等量代換).

∴AB∥CD________________________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題 ——
(1)用配方法解一元二次方程:2x2﹣4x﹣5=0.
(2)化簡: ÷(x+2﹣ ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船沿正南方向以33海里/時的速度勻速航行,在m處觀測到燈塔p在西偏南69°方向下,航行2小時后到達(dá)n處,觀測燈塔p在西偏南57°方向上,若該船繼續(xù)向南航行至離燈塔最近位置,求此時輪船離燈塔的距離約為多少海里?(結(jié)果精確到整數(shù),參考數(shù)據(jù):tan33°≈ ,sin33°≈ ,cos33°≈ ,tan21°≈ ,sin21°≈ ,c0s21°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,把直角三角形的直角頂點(diǎn)放在直線上,射線平分.

1)如圖,若,求的度數(shù).

2)若,則的度數(shù)為 .

3)由(1)和(2),我們發(fā)現(xiàn)之間有什么樣的數(shù)量關(guān)系?

4)若將三角形繞點(diǎn)旋轉(zhuǎn)到如圖所示的位置,試問之間的數(shù)量關(guān)系是否發(fā)生變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在平面直角坐標(biāo)系xOy中,三角形ABC三個頂點(diǎn)的坐標(biāo)分別為(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 個單位長度,再向左平移 個單位長度得到三角形 ,點(diǎn)AB,C的對應(yīng)點(diǎn)分別為 ,.

(1)寫出點(diǎn) , 的坐標(biāo)

(2)在圖中畫出平移后的三角形 ;

(3)三角形 的面積為__________

查看答案和解析>>

同步練習(xí)冊答案