【題目】為支持國家南水北調(diào)工程建設(shè),小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場調(diào)查得知,種植草莓不超過20畝時,所得利潤y(元)與種植面積m(畝)滿足關(guān)系式y(tǒng)=1500m;超過20畝時,y=1380m+2400.而當(dāng)種植櫻桃的面積不超過15畝時,每畝可獲得利潤1800元;超過15畝時,每畝獲得利潤z(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)中的一種).

x(畝)

20

25

30

35

z(元)

1700

1600

1500

1400


(1)設(shè)小王家種植x畝櫻桃所獲得的利潤為P元,直接寫出P關(guān)于x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)如果小王家計劃承包40畝荒山種植草莓和櫻桃,當(dāng)種植櫻桃面積x(畝)滿足0<x<20時,求小王家總共獲得的利潤w(元)的最大值.

【答案】
(1)

觀察圖表的數(shù)量關(guān)系,可以得出P關(guān)于x的函數(shù)關(guān)系式為:


(2)

∵利潤=畝數(shù)×每畝利潤,

∴①當(dāng)0<x≤15時,W=1800x+1380(40﹣x)+2400=420x+57600;

當(dāng)x=15時,W有最大值,W最大=6300+57600=63900;

②當(dāng)15<x<20,W=﹣20x+2100+1380(40﹣x)+2400=﹣1400x+59700;

∵﹣1400x+59700<63900;

∴x=15時有最大值為:63900元.


【解析】(1)根據(jù)圖表的性質(zhì),可以得出P關(guān)于x的函數(shù)關(guān)系式和出x的取值范圍.
(2)根據(jù)利潤=畝數(shù)×每畝利潤,可得①當(dāng)0<x≤15時 ②當(dāng)15<x<20時,利潤的函數(shù)式,即可解題;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風(fēng)箏的骨架相似.
定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD
判定:①兩組鄰邊分別相等的四邊形是箏形
②有一條對角線垂直平分另一條對角線的四邊形是箏形
顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點

如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務(wù):
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務(wù):
(1)請說出箏形和菱形的相同點和不同點各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設(shè)計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:
①頂點都在格點上;
②所設(shè)計的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王華、張偉兩位同學(xué)分別將自己10次數(shù)學(xué)自我檢測的成績繪制成如下統(tǒng)計圖:

(1)根據(jù)圖中提供的數(shù)據(jù)列出如下統(tǒng)計表:

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

王華

80

b

80

d

張偉

a

85

c

260

則a= , b= , c= , d= ,
(2)將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的是
(3)現(xiàn)在要從這兩個同學(xué)選一位去參加數(shù)學(xué)競賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線PA切⊙O于點A,連接PO.

(1)在PO的上方作射線PC,使∠OPC=∠OPA(用尺規(guī)在原圖中作,保留痕跡,不寫作法),并證明:PC是⊙O的切線;
(2)在(1)的條件下,若PC切⊙O于點B,AB=AP=4,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船C的俯角是∠FDC=30°,若小華的眼睛與地面的距離是1.6米,BG=0.7米,BG平行于AC所在的直線,迎水坡i=4:3,坡長AB=8米,點A、B、C、D、F、G在同一平面內(nèi),則此時小船C到岸邊的距離CA的長為 米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=5,AD=12,將矩形ABCD沿直線l向右翻滾兩次至如圖所示位置,則點B所經(jīng)過的路線長是 (結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是自行車騎行訓(xùn)練場地的一部分,半圓O的直徑AB=100,在半圓弧上有一運動員C從B點沿半圓周勻速運動到M(最高點),此時由于自行車故障原地停留了一段時間,修理好繼續(xù)以相同的速度運動到A點停止.設(shè)運動時間為t,點B到直線OC的距離為d,則下列圖象能大致刻畫d與t之間的關(guān)系是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃用這兩種原料全部生產(chǎn)A、B兩種產(chǎn)品共50件,生產(chǎn)A、B兩種產(chǎn)品與所需原料情況如下表所示:

原料型號

甲種原料(千克)

乙種原料(千克)

A產(chǎn)品(每件)

9

3

B產(chǎn)品(每件)

4

10


(1)該工廠生產(chǎn)A、B兩種產(chǎn)品有哪幾種方案?
(2)若生成一件A產(chǎn)品可獲利80元,生產(chǎn)一件B產(chǎn)品可獲利120元,怎樣安排生產(chǎn)可獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的函數(shù)y=kx2+2x﹣1與x軸僅有一個公共點,則實數(shù)k的值為

查看答案和解析>>

同步練習(xí)冊答案