【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長(zhǎng).
【答案】見解析;2.
【解析】試題分析:根據(jù)正方形的性質(zhì)得到AD=AB,∠B=∠D=90°,根據(jù)折疊的性質(zhì)可得AD=AF,∠AFE=∠D=90°,從而得到∠AFG=∠B=90°,AB=AF,結(jié)合AG=AG得到三角形全等;根據(jù)全等得到BG=FG,設(shè)BG=FG=x,則CG=6-x,根據(jù)E為中點(diǎn)得到CE=EF=DE=3,則EG=3+x,根據(jù)Rt△ECG的勾股定理得出x的值.
試題解析:(1)、∵四邊形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折疊的性質(zhì)可知
AD=AF,∠AFE=∠D=90°, ∴∠AFG=90°,AB=AF, ∴∠AFG=∠B, 又AG=AG, ∴△ABG≌△AFG;
(2)、∵△ABG≌△AFG, ∴BG=FG, 設(shè)BG=FG= ,則GC= , ∵E為CD的中點(diǎn),
∴CE=EF=DE=3, ∴EG= , ∴, 解得, ∴BG=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交點(diǎn)為C,則圖中全等三角形共有( )
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果a與b互為相反數(shù),x與y互為倒數(shù),則代數(shù)式|a+b|﹣2xy值為( )
A.0
B.﹣2
C.﹣1
D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果x=3時(shí),式子px3+qx+1的值為2016,則當(dāng)x=﹣3時(shí),式子px3+qx﹣1的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,1)且經(jīng)過點(diǎn)B,連接AB,直線AB與此拋物線的另一個(gè)交點(diǎn)為C,則S△BCD:S△ABO=( )
A.8:1 B.6:1 C.5:1 D.4:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)點(diǎn)中在函數(shù)y=2x-3的圖象上有( )個(gè).
(1,2) , (3,3) , (-1, -1), (1.5,0)
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.
(1)填空:如圖1,AC的長(zhǎng)度= ,tan∠ABD= ;
(2)試判斷△ADC與△AEB的關(guān)系,并說明理由;
(3)如圖2建立平面直角坐標(biāo)系,保持△ABD不動(dòng),將△ABC向x軸的正方向平移到△FGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,△FBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com