【題目】在平面直角坐標(biāo)系中,以C(x0,y0)為圓心半徑為r的圓的標(biāo)準(zhǔn)方程是(x﹣x0)2+(y﹣y0)2=r2.例如,在平面直角坐標(biāo)系中,⊙C的圓心C(2,3),點(diǎn)M(3,5)是圓上一點(diǎn),如圖,過點(diǎn)C、點(diǎn)M分別作x軸、y軸的平行線,交于點(diǎn)H,在Rt△MCH中,由勾股定理可得:r2=MC2=CH2+MH2=1+4=5,則圓C的標(biāo)準(zhǔn)方程是(x﹣2)2+(y﹣3)2=5.那么以點(diǎn)(﹣3,4)為圓心,過點(diǎn)(﹣2,﹣1)的圓的標(biāo)準(zhǔn)方程是_____.
【答案】26
【解析】
作出圖像,根據(jù)所給條件確定圓的標(biāo)準(zhǔn)方程的解析式是(x﹣x0)2+(y﹣y0)2=r2,其中(x0,y0)是圓心,r是MC之間的距離,利用勾股定理求出r的長(zhǎng)度即可解題.
解:如圖,圓心C(﹣3,4),點(diǎn)M(﹣2,﹣1),過C作CH∥x軸,過M作MH∥y軸,CH交MH于點(diǎn)H,
則在Rt△MCH中,CH=﹣2﹣(﹣3)=1,MH=4﹣(﹣1)=5,
∴r2=MC2=CH2+MH2=1+25=26,
∴以點(diǎn)(﹣3,4)為圓心,過點(diǎn)(﹣2,﹣1)的圓的標(biāo)準(zhǔn)方程是(x+3)2+(y﹣4)2=26.
故答案為:(x+3)2+(y﹣4)2=26.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn).點(diǎn)A在x軸的正半軸上,點(diǎn)A的坐標(biāo)為(10,0).一條拋物線經(jīng)過O,A,B三點(diǎn),直線AB的表達(dá)式為,且與拋物線的對(duì)稱軸交于點(diǎn)Q.
(1)求拋物線的表達(dá)式;
(2)如圖2,在A,B兩點(diǎn)之間的拋物線上有一動(dòng)點(diǎn)P,連結(jié)AP,BP,設(shè)點(diǎn)P的橫坐標(biāo)為m,△ABP的面積S,求出面積S取得最大值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖3,將△OAB沿射線BA方向平移得到△DEF,在平移過程中,以A,D,Q為頂點(diǎn)的三角形能否成為等腰三角形?如果能,請(qǐng)直接寫出此時(shí)點(diǎn)E的坐標(biāo)(點(diǎn)O除外);如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA, CB于點(diǎn)E,F(xiàn),點(diǎn)G是AD的中點(diǎn).求證:GE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,半徑為1的圓心角為60°的扇形紙片OAB在直線L上向右做無滑動(dòng)的滾動(dòng).且滾動(dòng)至扇形O′A′B′處,則頂點(diǎn)O所經(jīng)過的路線總長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為20cm,∠ABC=120°,對(duì)角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過點(diǎn)P作PQ∥BD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;
(2)若點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?
(3)直線PN與AC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動(dòng)的平均時(shí)間不少于1小時(shí).為了解學(xué)生參加戶外活動(dòng)的情況,對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?
(2)補(bǔ)充頻數(shù)分布直方圖;
(3)求表示戶外活動(dòng)時(shí)間 1小時(shí)的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,BM是ABC內(nèi)部的一條射線,且,點(diǎn)A關(guān)于BM的對(duì)稱點(diǎn)為D,連接AD,BD,CD,其中AD、CD的延長(zhǎng)線分別交射線BM于點(diǎn)E,P.
(1)依題意補(bǔ)全圖形;
(2)若ABM ,求BDC 的大。ㄓ煤的式子表示);
(3)用等式表示線段PB,PC與PE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是弧AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E的切線與AD交于點(diǎn)M.與CD交于點(diǎn)N.
(1)求證:∠MBN=45°;
(2)設(shè)AM=x,CN=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)設(shè)正方形的對(duì)角線AC交BM于P,BN于Q,如果AP=m,CQ=n,求m與n之間滿足的關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com