如圖,比較a與b的大小:a________b.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用一段長為10米的籬笆,一邊靠墻圍出一塊苗圃.精英家教網(wǎng)
(1)如圖1,若圍出的苗圃是△A1B1C1,A1C1=B1C1,靠墻部分A1B1=8米;如圖2,若圍出的苗圃是矩形A2B2C2D2,靠墻部分A2B2=5米.設(shè)△A1B1C1的面積為S1(m2),矩形A2B2C2D2的面積為S2(m2).試計算S1與S2的面積.
(2)如圖3,若圍出的苗圃是五邊形A3B3C3D3E3,A3E3⊥A3B3,B3C3⊥A3B3,∠C3=∠E3=135°,∠D3=90°.若C3D3=D3E3=
2
(m),五邊形A3B3C3D3E3的面積為S3(m2),則它的面積應(yīng)該為多少?
(3)請你在圖4中設(shè)計出一種圍法,使圍成的苗圃的面積大于(1)(2)中苗圃的面積.(說明你所圍圖形的特征,并計算它的面積)(比較大小時部分參考數(shù)據(jù):
2
≈1.4
,
3
≈1.7
,π≈3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,在△ABC與△DBC中,∠EBC=40°,∠BEC=110°.則下列說法中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•聊城一模)在一平直河岸l同側(cè)有A,B兩個村莊,A,B到l的距離分別是3km和2km,AB=akm(a>1).現(xiàn)計劃在河岸l上建一抽水站P,用輸水管向兩個村莊供水.
某班數(shù)學(xué)興趣小組設(shè)計了兩種鋪設(shè)管道方案:圖1是方案一的示意圖,設(shè)該方案中管道長度為d1,且d1=PB+BA(km)(其中BP⊥l于點P);圖2是方案二的示意圖,設(shè)該方案中管道長度為d2,且d2=PA+PB(km)(其中點A′與點A關(guān)于l對稱,A′B與l交于點P).

觀察計算:(1)在方案一中,d1=
a+2
a+2
km(用含a的式子表示);
(2)在方案二中,組長小宇為了計算d2的長,作了如圖3所示的輔助線,請你按小宇同學(xué)的思路計算,d2=
a2+24
a2+24
km(用含a的式子表示).
探索歸納:(1)①當(dāng)a=4時,比較大。篸1
d2(填“>”、“=”或“<”);
②當(dāng)a=6時,比較大。篸1
d2(填“>”、“=”或“<”);
(2)請你參考方法指導(dǎo),就a(當(dāng)a>1時)的所有取值情況進行分析,要使鋪設(shè)的管道長度較短,應(yīng)選擇方案一還是方案二?
方法指導(dǎo):當(dāng)不易直接比較兩個正數(shù)m與n的大小時,可以對它們的平方進行比較:
∵m2-n2=(m+n)(m-n),m+n>0,
∴(m2-n2)與(m-n)的符號相同.
當(dāng)m2-n2>0時,m-n>0,即m>n;
當(dāng)m2-n2=0時,m-n=0,即m=n;
當(dāng)m2-n2<0時,m-n<0,即m<n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個;
②所畫的長方形中哪個周長最?為什么?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

反比例函數(shù)y=
kx
(k>0)的圖象如圖所示,A(-3,a),B(-2,b)是該圖象上的兩點.
(1)比較a與b的大;
(2)若a,b兩數(shù)中較大的數(shù)比較小的數(shù)大2,求這個反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案