作业宝如圖,矩形ABCD中,AB=15cm,點E在AD上,且AE=9cm,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A′處,則A′C=________cm.

8
分析:由題意易證得△A′BC≌△DCE(AAS),BC=AD,A′B=AB=CD=15cm,然后設A′C=xcm,在Rt△A′BC中,由勾股定理可得BC2=A′B2+A′C2,即可得方程,解方程即可求得答案.
解答:∵四邊形ABCD是矩形,
∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,
∴∠DEC=∠A′CB,
由折疊的性質(zhì),得:A′B=AB=15cm,∠BA′E=∠A=90°,
∴A′B=CD,∠BA′C=∠D=90°,
在△A′BC和△DCE中,
,
∴△A′BC≌△DCE(AAS),
∴A′C=DE,
設A′C=xcm,則BC=AD=DE+AE=x+9(cm),
在Rt△A′BC中,BC2=A′B2+A′C2,
即(x+9)2=x2+152
解得:x=8,
∴A′C=8cm.
故答案為:8.
點評:此題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理以及折疊的性質(zhì).此題難度適中,注意掌握數(shù)形結合思想與方程思想的應用,注意掌握折疊前后圖形的對應關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關系式一定滿足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案