【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數(shù).
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫(xiě)出CD的長(zhǎng).
【答案】(1)1,45°;(2)∠ACD=∠B, =k;(3).
【解析】
(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到
根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到 ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;
過(guò)A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到 ,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)∵∠A=90°,
∴AB=AC,
∴∠B=45°,
∵∠PAD=90°,∠APD=∠B=45°,
∴AP=AD,
∴∠BAP=∠CAD,
在△ABP 與△ACD 中,
AB=AC, ∠BAP=∠CAD,AP=AD,
∴△ABP≌△ACD,
∴PB=CD,∠ACD=∠B=45°,
∴=1,
(2)
∵∠BAC=∠PAD=90°,∠B=∠APD,
∴△ABC∽△APD,
∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴∠ACD=∠B,
(3)過(guò) A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=1,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
過(guò) A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=7,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3)、B(﹣2,﹣2)、C(4,﹣2),則△ABC外接圓半徑的長(zhǎng)度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門(mén)抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計(jì)圖:
(1)樣本中的總?cè)藬?shù)為 人;扇形統(tǒng)計(jì)十圖中“騎自行車(chē)”所在扇形的圓心角為 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該單位共有1000人,積極踐行這種生活方式,越來(lái)越多的人上下班由開(kāi)私家車(chē)改為騎自行車(chē).若步行,坐公交車(chē)上下班的人數(shù)保持不變,問(wèn)原來(lái)開(kāi)私家車(chē)的人中至少有多少人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下的題目:如圖1,在等邊中,點(diǎn)在上,點(diǎn)在的延長(zhǎng)線(xiàn)上,且,試確定線(xiàn)段與的大小關(guān)系,并說(shuō)明理由,
(1)小敏與同桌小聰探究解答的思路如下:
①特殊情況,探索結(jié)論,
當(dāng)點(diǎn)為的中點(diǎn)時(shí),如圖2,確定線(xiàn)段與的大小關(guān)系,請(qǐng)你直接寫(xiě)出結(jié)論:______.(填>,<或=)
②特例啟發(fā),解答題目,
解:題目中,與的大小關(guān)系是:______.(填>,<或=)
理由如下:如圖3,過(guò)點(diǎn)作,交于點(diǎn),(請(qǐng)你補(bǔ)充完成解答過(guò)程)
(2)拓展結(jié)論,設(shè)計(jì)新題,
同學(xué)小敏解答后,提出了新的問(wèn)題:在等邊中,點(diǎn)在直線(xiàn)上,點(diǎn)在直線(xiàn)上,且,已知的邊長(zhǎng)為,求的長(zhǎng)?(請(qǐng)直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綜合與實(shí)踐”學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為,,,用記號(hào) 表示一個(gè)滿(mǎn)足條件的三角形,如表示邊長(zhǎng)分別為2,4,4個(gè)單位長(zhǎng)度的一個(gè)三角形.
(1)若這些三角形三邊的長(zhǎng)度為大于0且小于3的整數(shù)個(gè)單位長(zhǎng)度,請(qǐng)用記號(hào)寫(xiě)出所有滿(mǎn)足條件的三角形;
(2)如圖,是的中線(xiàn),線(xiàn)段,的長(zhǎng)度分別為2個(gè),6個(gè)單位長(zhǎng)度,且線(xiàn)段的長(zhǎng)度為整數(shù)個(gè)單位長(zhǎng)度,過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn)
①求之長(zhǎng);
②請(qǐng)直接用記號(hào)表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,OA=2cm,OA⊥OB,AC交OB于D點(diǎn),AD=2CD.
(1)求∠BOC的度數(shù);
(2)求線(xiàn)段BD、線(xiàn)段CD和 BC圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來(lái).“共享單車(chē)”(俗稱(chēng)“小黃車(chē)”)公益活動(dòng)登陸我市中心城區(qū),某公司擬在甲、乙兩個(gè)街道社區(qū)投放一批“小黃車(chē)”,這批自行車(chē)包括A、B兩種不同款型,請(qǐng)回答下列問(wèn)題:
問(wèn)題1:?jiǎn)蝺r(jià)
該公司早期在甲街區(qū)進(jìn)行了試點(diǎn)投放,共投放A、B兩型自行車(chē)各50輛,投放成本共計(jì)7500元,其中B型車(chē)的成本單價(jià)比A型車(chē)高10元,A、B兩型自行車(chē)的單價(jià)各是多少?
問(wèn)題2:投放方式
該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車(chē)”,乙街區(qū)每1000人投放 輛“小黃車(chē)”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個(gè)街區(qū)共有15萬(wàn)人,試求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,點(diǎn)、分別在、上運(yùn)動(dòng)(不與點(diǎn)重合).
(1)如圖1,是的平分線(xiàn),的反方向延長(zhǎng)線(xiàn)與的平分線(xiàn)交于點(diǎn).
①若,則為多少度?請(qǐng)說(shuō)明理由.
②猜想:的度數(shù)是否隨、的移動(dòng)發(fā)生變化?請(qǐng)說(shuō)明理由.
(2)如圖2,若,,則的大小為 度(直接寫(xiě)出結(jié)果);
(3)若將“”改為“()”,且,,其余條件不變,則的大小為 度(用含、的代數(shù)式直接表示出米).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com