【題目】已知直線y1=﹣x+2和拋物線相交于點(diǎn)A,B.
(1)當(dāng)k=時(shí),求兩函數(shù)圖象的交點(diǎn)坐標(biāo);
(2)二次函數(shù)y2的頂點(diǎn)為P,PA或PB與直線y1=﹣x+2垂直時(shí),求k的值.
(3)當(dāng)﹣4<x<2時(shí),y1>y2,試直接寫出k的取值范圍.
【答案】(1)A(2,0),B(﹣,);(2)1或-;(3) <k<且k≠0.
【解析】
(1)聯(lián)立方程組即可求交點(diǎn);
(2)當(dāng)PA與y1=-x+2垂直時(shí),k=1;當(dāng)PB與y1=-x+2垂直時(shí),k=-;
(3)當(dāng)x=-4時(shí),y1>y2,6>24k;只有開口向上時(shí)成立,所以k>0;
(1)當(dāng)k=時(shí),,
聯(lián)立方程組,
∴或,
∴A(2,0),B(﹣,);
(2)的頂點(diǎn)P(1,﹣k),
當(dāng)PA與y1=﹣x+2垂直時(shí),k=1;
當(dāng)PB與y1=﹣x+2垂直時(shí),k=﹣;
(3)當(dāng)x=2時(shí),y1=y2=0,
當(dāng)x=﹣4時(shí),y1>y2,
當(dāng)k>0時(shí),
∴6>24k,
∴k<,
∴0<k<;
當(dāng)k<0時(shí),直線與拋物線有一個(gè)交點(diǎn)時(shí):-x+2=kx2-2kx,
∵△=(1+2k)2=0,
∴k=,
∴<k<0;
綜上所述;<k<且k≠0;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)學(xué)生對(duì)新冠病毒預(yù)防知識(shí)的了解,我校初一年級(jí)開展了網(wǎng)上預(yù)防知識(shí)的宣傳教育活動(dòng).為了解這次宣傳教育活動(dòng)的效果,學(xué)校從初一年級(jí)1500名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行網(wǎng)上知識(shí)測(cè)試(測(cè)試滿分100分,得分均為整數(shù)),并根據(jù)抽取的學(xué)生測(cè)試成績(jī),制作了如下統(tǒng)計(jì)圖表:
抽取學(xué)生知識(shí)測(cè)試成績(jī)的頻數(shù)表 | ||
成績(jī)(分) | 頻數(shù)(人) | 頻率 |
10 | 0.1 | |
15 | ||
0.2 | ||
40 | ||
由圖表中給出的信息回答下列問題:
(1) , ,并補(bǔ)全頻數(shù)直方圖;
(2)如果80分以上(包括80分)為優(yōu)秀,請(qǐng)估計(jì)初一年級(jí)1500名學(xué)生中成績(jī)優(yōu)秀的人數(shù);
(3)小強(qiáng)在這次測(cè)試中成績(jī)?yōu)?/span>85分,你認(rèn)為85分一定是這100名學(xué)生知識(shí)測(cè)試成績(jī)的中位數(shù)嗎?請(qǐng)簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)夫?qū)⑻O果樹種在正方形的果園內(nèi),為了保護(hù)蘋果樹不受風(fēng)吹,他在蘋果樹的周圍種上針葉樹.在下圖里,你可以看到農(nóng)夫所種植蘋果樹的列數(shù)(n)和蘋果樹數(shù)量及針葉樹數(shù)量的規(guī)律:當(dāng)n為某一個(gè)數(shù)值時(shí),蘋果樹數(shù)量會(huì)等于針葉樹數(shù)量,則n為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某專賣店有A、B兩種商品,已知在打折前,買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元.A、B兩種商品打相同折以后,某人買500件A商品和450件B商品一共比不打折少花1960元,請(qǐng)問A、B兩種商品打折前各多少錢?打了多少折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓周上一點(diǎn),連接AC、BC,以點(diǎn)C為端點(diǎn)作射線CD、CP分別交線段AB所在直線于點(diǎn)D、P,使∠1=∠2=∠A.
(1)求證:直線PC是⊙O的切線;
(2)若CD=4,BD=2,求線段BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①abc>0;②2a+b=0;③若m為任意實(shí)數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com