如圖,在△ABC中,AB=AC,BC=10,AD是底邊上的高,AD=12,E為AC中點(diǎn),則DE的長(zhǎng)為( 。
分析:根據(jù)等腰三角形三線合一的性質(zhì)求出AD⊥BC,CD=
1
2
BC,然后利用勾股定理求出AC的長(zhǎng)度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半求解.
解答:解:∵AB=AC,BC=10,AD是底邊上的高,
∴AD⊥BC,CD=
1
2
BC=
1
2
×10=5,
在Rt△ACD中,AC=
AD2+CD2
=
122+52
=13,
∵E為AC中點(diǎn),
∴DE=
1
2
AC=
1
2
×13=6.5.
故選A.
點(diǎn)評(píng):本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等腰三角形三線合一的性質(zhì),勾股定理的應(yīng)用,是基礎(chǔ)題,判定出AD⊥BC得到直角三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案