【題目】一只小球落在數(shù)軸上的某點,第一次從向左跳1個單位到,第二次從向右跳2個單位到,第三次從向左跳3個單位到,第四次從向右跳4個單位到……若按以上規(guī)律跳了6次時,它落在數(shù)軸上的點所表示的數(shù)恰好是2017,則這只小球的初始位置點所表示的數(shù)是_______,若按以上規(guī)律跳了2n次時,它落在數(shù)軸上的點所表示的數(shù)恰好是a,則這只小球的初始位置點所表示的數(shù)是________.

【答案】 2014, a-n

【解析】設(shè)p0表示的數(shù)為x,

P1表示的數(shù)為x-1;

P2表示的數(shù)為x-1+2=x+1;

P3表示的數(shù)為x+1-3=x-2;

P4表示的數(shù)為x-2+4=x+2;

P5表示的數(shù)為x+2-5=x-3;

P6表示的數(shù)為x-3+6=x+3;

由題意得

x+3=2017,

x=2014.

由①知,

x+n=a,

x=a-n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB,點M、N,在∠AOB的內(nèi)部求作一點P.使點P到∠AOB的兩邊距離相等,且PM=PN(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程kx2+2x﹣1=0有兩個不相等的實數(shù)根,則k的取值范圍是(
A.k>﹣1
B.k>1
C.k≠0
D.k>﹣1且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:
分解因式:x2+2x﹣3
解:原式=x2+2x+1﹣4=(x+1)2﹣4
=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)
此種方法抓住了二次項和一次項的特點,然后加一項,使這三項成為完全平方式,我們把這種分解因式的方法叫配方法.請仔細(xì)體會配方法的特點,然后嘗試用配方法解決下列問題:
(1)分解因式x2﹣2x﹣3=;a2﹣4ab﹣5b2=;
(2)無論m取何值,代數(shù)式m2+6m+13總有一個最小值,請你嘗試用配方法求出它的最小值;
(3)觀察下面這個形式優(yōu)美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.
請你說明這個等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC的周長為19,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為( )

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在列分式方程解應(yīng)用題時:
(1)主要步驟有:①審清題意;②設(shè)未知數(shù);③根據(jù)題意找關(guān)系,列出分式方程;④解方程,并;⑤寫出答案.
(2)請你聯(lián)系實際設(shè)計一道關(guān)于分式方程 = 的應(yīng)用題,要求表述完整,條件充分,并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個紙盒里裝有四張除數(shù)字以外完全相同卡片,四張卡片上的數(shù)字分別為1,2,3,4.先從紙盒里隨機取出一張,記下數(shù)字為,再從剩下的三張中隨機取出一張,記下數(shù)字為,這樣確定了點P的坐標(biāo)(, ).

(1)請你運用畫樹狀圖或列表的方法,寫出點P所有可能的坐標(biāo);

(2)求點P(, )在函數(shù)=-+4圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 平分 , 于點 , ,點 P 出發(fā),以 的速度沿線段 向終點 運動;同時,點 出發(fā),以 的速度沿射線 運動,當(dāng)點 P到達(dá)終點 時,則兩點均停止運動. 那么經(jīng)過 ,能使 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:

(1)12﹣(﹣18)+(﹣7)﹣15

2

3

4

查看答案和解析>>

同步練習(xí)冊答案