【題目】如圖,拋物線y=ax2+x+c與x軸交于A,B兩點,A點坐標為(﹣3,0),與y軸交于點C,點C坐標為(0.﹣6),連接BC,點C關于x軸的對稱點D,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求二次函數(shù)解析式;
(2)點P在x軸上運動,若﹣6≤m≤2時,求線段MQ長度的最大值.
(3)點P在x軸上運動時,N為平面內一點,使得點B、C、M、N為頂點的四邊形為菱形?如果存在,請直接寫出點N坐標;不存在,說明理由.
【答案】(1)y=x2+x﹣6;(2)MQ的最大值為16;(3)N坐標為(﹣,﹣)或(﹣2,0)或(7.2﹣3.6)或(2,﹣12).理由見解析.
【解析】
(1)把A點坐標為(-3,0)、點C坐標為(0,-6)代入二次函數(shù)表達式,解得:a=1,c=-6,故:二次函數(shù)解析式為y=x2+x-6;
(2)點C關于x軸的對稱點D(0,6),MQ=yM-yQ=-3m+6-(m2+m-6)=-(m+2)2+16,即可求解;
(3)①當BC邊為菱形的邊時,N點應該在x軸,關于B點對稱,即點N坐標為(-2,0);②當BC邊為菱形的對角線時,作BC的垂直平分線MH,直線BD與直線MH交點即為M坐標為,即可求解.
(1)把A點坐標為(﹣3,0)、點C坐標為(0,﹣6)代入二次函數(shù)表達式,
解得:a=1,c=﹣6,
故:二次函數(shù)解析式為y=x2+x﹣6;
(2)點C關于x軸的對稱點D(0,6),
點B、D坐標所在的直線方程為:y=﹣3x+6,
則:點M坐標為(m,﹣3m+6),點Q為(m,m2+m﹣6),
∴MQ=yM﹣yQ=﹣3m+6﹣(m2+m﹣6)=﹣(m+2)2+16,
在﹣6≤m≤2時,函數(shù)頂點處,取得最大值,
即MQ的最大值為16;
(3)①當BC邊為菱形的邊時,
情況一:N點應該在x軸,關于B點對稱,即點N坐標為(﹣2,0),
情況二:BC、MB是菱形兩條鄰邊,且BC=BM,則點N坐標為(2,﹣12),
情況三:BC、CM為鄰邊時,則點N坐標為(7.2﹣3.6);
②當BC邊為菱形的對角線時,作BC的垂直平分線MH,
則直線DB與MH的交點為M,M關于BC的對稱點為N,H為BC的中點,
∴H坐標為(1,﹣3),
直線BD的方程為:y=﹣3x+6,直線MH的方程為:y=-x-,
聯(lián)立以上兩個方程,解得:M坐標為(,﹣),
同理得N坐標為(﹣,﹣),
故:N坐標為(﹣,﹣)或(﹣2,0)或(7.2﹣3.6)或(2,﹣12).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東航行,在A處測得小島C在北偏東75°方向上,兩小時后,輪船在B處測得小島C在北偏東60°方向上,在小島周圍15海里處有暗礁,若輪船仍然按18海里/時的速度向東航行,請問是否有觸礁危險?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】布袋里有四個小球,球表面分別標有2、3、4、6四個數(shù)字,它們的材質、形狀、大小完全相同。從中隨機摸出一個小球記下數(shù)字為x,再從剩下的三個球中隨機摸出一個球記下數(shù)字為y,點A的坐標為(x,y).運用畫樹狀圖或列表的方法,寫出A點所有可能的坐標,并求出點A在反比例函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象與x軸交于A(﹣2,0)、B(4,0)兩點,且函數(shù)經(jīng)過點(3,10).
(1)求二次函數(shù)的解析式;
(2)設這個二次函數(shù)的頂點為P,求△ABP的面積;
(3)當x為何值時,y≤0.(請直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△AOD是等腰三角形,點A(12,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1,和過P、A兩點的二次函數(shù)y2,的開口均向下,它們的頂點分別為B,C,點B,C分別在OD、AD上.當OD=AD=10時,則兩個二次函數(shù)的最大值之和等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】松雷中學校學生會干部對校學生會倡導的“助殘”自愿捐款活動進行抽樣調查,得到一組學生捐款情況的數(shù)據(jù),下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形高度之比為3:4:5:8:2,又知此次調查中捐15元和20元的人數(shù)共39人.
(1)他們一共抽查了多少人?
(2)若該校共有2310名學生,請估計全校學生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內心,以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).
(1)求拋物線的解析式及頂點B的坐標;
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,直接寫出點P的坐標;若不存在,請說明理由;
(4)設△AOE沿x軸正方向平移t個單位長度(0<t≤3)時,△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點B的坐標為(6,4).
(1)請用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點A和點C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)
(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請在圖中畫出所有這樣的直線AC,并寫出與之對應的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com