【題目】如圖,在平面直角坐標系中,直線與x軸、y軸分別交于A,B兩點,以AB為邊在第二象限內作正方形ABCD,則D點坐標是_______;在y軸上有一個動點M,當的周長值最小時,則這個最小值是_______.
【答案】
【解析】
如圖(見解析),先根據(jù)一次函數(shù)的解析式可得點A、B的坐標,從而可得OA、OB、AB的長,再根據(jù)正方形的性質可得,,然后根據(jù)三角形全等的判定定理與性質可得,由此即可得出點D的坐標;同樣的方法可求出點C的坐標,再根據(jù)軸對稱的性質可得點的坐標,然后根據(jù)軸對稱的性質和兩點之間線段最短得出的周長值最小時,點M的位置,最后利用兩點之間的距離公式、三角形的周長公式即可得.
如圖,過點D作軸于點E,作點C關于y軸的對稱點,交y軸于點F,連接,交y軸于點,連接,則軸
對于
當時,,解得,則點A的坐標為
當時,,則點B的坐標為
四邊形ABCD是正方形
,
在和中,
則點D的坐標為
同理可證:
則點C的坐標為
由軸對稱的性質得:點的坐標為,且
的周長為
由兩點之間線段最短得:當點M與點重合時,取得最小值
則的周長的最小值為
故答案為:,.
科目:初中數(shù)學 來源: 題型:
【題目】已知點C是線段AB的中點
(1)如圖,若點D在線段CB上,且BD=1.5厘米,AD=6.5厘米,求線段CD的長度;
(2)若將(1)中的“點D在線段CB上”改為“點D在線段CB的延長線上”,其他條件不變,請畫出相應的示意圖,并求出此時線段CD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀,再解答.
我們在判斷點(-7,20)是否在直線y=2x+6上時,常用的方法是:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判斷出點(-7,20)不在直線y=2x+6上.小明由此方法并根據(jù)“兩點確定一條直線”,推斷出點A(1,2),B(3,4),C(-1,6)三點可以確定一個圓,你認為他的推斷正確嗎?請你利用上述方法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是放在地面上的一個長方體盒子,其中AB=18cm,BC=12cm,BF=10cm,點M在棱AB上,且AM=6cm,點N是FG的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,它需要爬行的最短路程為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B(0,m)、C(0,n)兩點,且m、n(m>n)滿足方程組的解.
(1)求證:AC⊥AB;
(2)若點D在直線AC上,且DB=DC,求點D的坐標;
(3)在(2)的條件下,在直線BD上尋找點P,使以A、B、P三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標系中的位置如圖所示.
(1)將△ABC向上平移3個單位后,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點A1的坐標.
(2)將△ABC繞點O順時針旋轉90°,請畫出旋轉后的△A2B2C2,并求點B所經過的路徑長(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了3.2米(BB‘),再把竹竿豎立在地面上,測得竹竿的影長(B‘C‘)為1.8米,求路燈離地面的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,PA、PB為⊙O的切線,M、N是PA、AB的中點,連接MN交⊙O點C,連接PC交⊙O于D,連接ND交PB于Q,求證:MNQP為菱形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com