【題目】已知拋物線y=x2+bx+cb、c是常數(shù))與x軸有兩個交點,其中有一點的坐標為A10),點Pm,t)(m≠0)為拋物線上的一個動點.

1)設y′=m+t,寫出y′關于m的函數(shù)解析式,并求出該函數(shù)圖象的對稱軸(用含c的代數(shù)式表示);

2)在(1)的條件下,當m≤3時,與其對應的函數(shù)y′的最小值為﹣,求拋物線y=x2+bx+c的解析式;

3)在(2)的條件下,P點關于原點的對稱點為P′,且P′落在第一象限內(nèi),當P′A2取得最小值時,求mt的值.

【答案】(1)y′=m2cm+c m=c(2)y=x2+2x33t=m=

【解析】【試題分析】(1)根據(jù)點P(m,t)(m≠0)為拋物線上的一個動點得:

t=m2+bm+c,y′=m+t=m+m2+bm+c=m2+(b+1)m+c,

A(1,0)代入y=x2+bx+c,得1+b+c=0,b+1=﹣c,

y′=m2﹣cm+c.根據(jù)二次函數(shù)的對稱軸表達式為:該函數(shù)圖象的對稱軸為m=c;

(2)由(1)知,y′=m2﹣cm+c,對稱軸為m=c;

c≤3時,即:c≤6,此時,m=c時,拋物線y′=m2﹣cm+c取最小值,

即: c2﹣c×c+c=﹣

解得:c=﹣3c=7(舍去),

c=﹣3時,b=﹣c﹣1=2.

y=x2+2x﹣3;

(3)當y=x2+2x﹣3時,

P關于原點的對稱點為P',有P'(﹣m,﹣t).

P'(﹣m,﹣t)在第一象限,

﹣m>0,﹣t>0.即m<0,t<0.

由拋物線y=x2+2x﹣3的頂點為(﹣1,﹣4)

﹣4≤t<0.

A點坐標為(1,0),

利用兩點間的距離公式得:P'A2=(﹣m﹣1)2+t2=(m+1)2+t2

t=m2+2m﹣3=(m+1)2﹣4,

變形:(m+1)2=t+4,

P'A2=t2+t+4=(t+2+

∴當t=﹣時,P'A2取得最小值.

t=﹣代入t=m2+2m﹣3,得﹣=m2+2m﹣3

解得m=m=(舍)

故:當t=﹣時,m=.

【試題解析】

1t=m2+bm+c

y′=m+t=m+m2+bm+c=m2+b+1m+c

A1,0)代入y=x2+bx+c,得1+b+c=0b+1=﹣c,

y′=m2﹣cm+c

∴該函數(shù)圖象的對稱軸為m=c;

2)由(1)知,y′=m2﹣cm+c,對稱軸為m=c

c3時,即:c6,此時,m=3時,拋物線y′=m2﹣cm+c取最小值,

∵點Pm,t),

∴點P的橫坐標是3,

即:點P是定點,不是動點,不符合題意,

c≤3時,即:c≤6,此時,m=c時,拋物線y′=m2﹣cm+c取最小值,

即: c2﹣c×c+c=﹣,

c=﹣3c=7(舍去),

c=﹣3時,b=﹣c﹣1=2

y=x2+2x﹣3;

3)當y=x2+2x﹣3時,

P關于原點的對稱點為P',有P'﹣m﹣t).

P'﹣m,﹣t)在第一象限,

﹣m0,﹣t0.即m0,t0

由拋物線y=x2+2x﹣3的頂點為(﹣1﹣4

﹣4≤t0

A點坐標為(1,0),

P'A2=﹣m﹣12+t2=m+12+t2,

t=m2+2m﹣3=m+12﹣4

m+12=t+4,

P'A2=t2+t+4=t+2+

∴當t=﹣時,P'A2取得最小值.

t=﹣代入t=m2+2m﹣3,得﹣=m2+2m﹣3

解得m=m=(舍)

∴當t=﹣時,m=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某糕點廠中秋節(jié)前要制作一批盒裝月餅,每盒中裝2塊大月餅和4塊小月餅.制作1塊大月餅要用0.05kg面粉,1塊小月餅要用0.02kg面粉.現(xiàn)共有面粉4500kg,問制作兩種月餅應各用多少面粉,才能生產(chǎn)最多的盒裝月餅?(用一元一次方程解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a是最大的負整數(shù),b-5的相反數(shù),c=-|-2|,且a、b、c分別是點AB、C在數(shù)軸上對應的數(shù).


1)求ab、c的值,并在數(shù)軸上標出點A、B、C
2)若動點P從點A出發(fā)沿數(shù)軸正方向運動,動點Q同時從點B出發(fā)也沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒1個單位長度,求運動幾秒后,點P可以追上點Q?
3)在數(shù)軸上找一點M,使點MA、BC三點的距離之和等于12,請求出所有點M對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小明從家步行去書店看書.出發(fā)小時后距家1.8千米時,爸爸駕車從家沿相同路線追趕小明,在地追上小明后,二人駕車繼續(xù)前行到達書店.小明在書店看書,爸爸去單位地辦事.如圖是小明與爸爸兩人之間距離(千米)與小明出發(fā)的時間(小時)之間的函數(shù)圖象,(小明步行速度與爸爸駕車速度始終保持不變,彼此交流時間忽略不計),請根據(jù)圖象回答下列問題:

1)小明步行速度是_____千米/小時,爸爸駕車速度是______千米/小時:

2)圖中點的坐標是______

3)求書店與家的路程;

4)求爸爸出發(fā)多長時間,兩人相距3千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,按如下步驟作圖:①以點A為圓心,AB長為半徑畫弧;②以點C為圓心,CB長為半徑畫弧,兩弧相交于點D;③連結BD,與AC交于點E,連結AD,CD

1)填空:△ABC≌△ ACBD的位置關系是

2)如圖2,當AB=BC時,猜想四邊形ABCD是什么四邊形,并證明你的結論.

3)在(2)的條件下,若AC=8cm,BD=6cm,則點BAD的距離是 cm,若將四邊形ABCD通過割補,拼成一個正方形,那么這個正方形的邊長為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某種學生快餐(共 400g)營養(yǎng)成分扇形統(tǒng)計圖,已知期中表示脂肪的扇形的圓心角為 36°,維生素和礦物質(zhì)含量占脂肪的一 半,蛋白質(zhì)含量比碳水化合物多 40g.有關這份快餐,下列說法正 確的是(

A.表示維生素和礦物質(zhì)的扇形的圓心角為 20°.B.脂肪有 44g,含量超過 10%.

C.表示碳水化合物的扇形的圓心角為 135°.D.蛋白質(zhì)的含量為維生素和礦物質(zhì)的 9 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】25 日某路段雷達測速區(qū)監(jiān)測到一組汽車時速數(shù)據(jù),經(jīng)整理得到如下頻數(shù)表和頻數(shù)直方圖(每組含后一邊界值,不含前一邊界值).

1)請你把表中的數(shù)據(jù)填寫完整.

2)補全頻數(shù)直方圖.

3)若該路段限速 70(汽車時速高于 70 千米/小時即為違章),抽測到違章車輛有多少輛?統(tǒng)計表明 25 日全天通過這個路段的汽車大約有 15000 輛,請估計這天超速違章的車輛有多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按逆時針方向旋轉至圖2的位置,使得ON落在射線OB上,此時三角板旋轉的角度為   度;

(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;

(3)在上述直角三角板從圖1逆時針旋轉到圖3的位置的過程中,若三角板繞點O按15°每秒的速度旋轉,當直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD,點E在邊AB上,M、N分別在射線BC和射線AD上,連接EM,EN,將三角形MBE沿EM折疊(把物體的一部分翻轉和另一部分貼攏),點B落在點B’處;將三角形NAE沿EN折疊,點A落在點A’.

1)若,,用直尺、量角器畫出射線EB’EA’

2)若,,求的度數(shù);

3)若,用含的代數(shù)式表示的度數(shù).

查看答案和解析>>

同步練習冊答案