【題目】如圖,每個小正方形的邊長都為1,四邊形ABCD的頂點都在小正方形的頂點上.
(1)求四邊形ABCD的面積;
(2)∠BCD是直角嗎?說明理由.
【答案】(1)四邊形ABCD的面積=14;(2)是.理由見解析.
【解析】
(1)根據(jù)四邊形ABCD的面積=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD即可得出結論;
(2)先根據(jù)銳角三角函數(shù)的定義判斷出∠FBC=∠DCG,再根據(jù)直角三角形的性質可得出∠BCF+∠DCG=90°,故可得出結論.
(1)
∵四邊形ABCD的面積=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD
=5×51×52×41×2(1+5)×1
=25
=14;
(2)是.理由如下:
∵tan∠FBC,tan∠DCG,∴∠FBC=∠DCG.
∵∠FBC+∠BCF=∠DCG+∠CDG=90°,∴∠BCF+∠DCG=90°,∴∠BCD是直角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1.
(1)建立適當?shù)钠矫嬷苯亲鴺讼岛螅酎cA(1,3)、C(2,1),則點B的坐標為______;
(2)△ABC的面積為______;
(3)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于A、B兩點,且點A的橫坐標和點B的縱坐標都是-2 , 求:
(1)一次函數(shù)的解析式;
(2)△AOB的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn)商品的日銷售單價x元與日銷售量y個之間有如下關系:
x(元/個) | 3 | 4 | 5 | 6 |
y(個) | 20 | 15 | 12 | 10 |
(1)根據(jù)表中數(shù)據(jù),在直角坐標系描出實數(shù)對(x,y)的對應點
(2)猜測并確定y與x之間的函數(shù)關系式,并畫出圖象;
(3)設經(jīng)營此賀卡的銷售利潤為W元,試求出W與x之間的函數(shù)關系式,若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當日銷售單價x定為多少元時,才能獲得最大日銷售利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD的各頂點坐標分別為A(1,0),B(2,0),C(2,2),D(0,1),四邊形BFGH的各頂點坐標分別為F(4,0),G(4,4),H(0,2),則下列說法正確的是( )
A. 四邊形ABCD與四邊形BFGH相似但不位似
B. 四邊形ABCD與四邊形BFGH位似但不相似
C. 四邊形ABCD與四邊形BFGH位似,且相似比為1∶
D. 四邊形ABCD與四邊形BFGH位似,且相似比為1∶2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系中,直線AB與x軸交于點A,與y軸交于點B,與直線OC:y=x交于點C.
(1)若直線AB解析式為.
①求點C的坐標;
②根據(jù)圖象,求關于x的不等式0<-x+10<x的解集;
(2)如下圖,作∠AOC的平分線ON,若AB⊥ON,垂足為E,ΔOAC的面積為9,且OA=6,P、Q分別為線段OA、OE上的動點,連接AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值:若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;
(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測傾器測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學測得CD=10米.則河的寬度為________米(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=6,點D在邊AC上,AD的中垂線交BC于點E.若∠AED=∠B,CE=3BE,則CD等于( )
A. B. 2C. D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com