【題目】我國魏晉時期的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式,后人借助這種分割方法所得的圖形證明了勾股定理.如圖所示,若a2b3,現(xiàn)隨機向該圖形內(nèi)擲一枚小針,則針尖落在陰影域內(nèi)的概率為_____

【答案】

【解析】

設小正方形的邊長為x,根據(jù)已知條件得到AB2+35,根據(jù)勾股定理列方程求得x1,x=﹣6(不合題意舍去),根據(jù)三角形的面積公式即可得到結(jié)論.

設小正方形的邊長為x

a2,b3,

AB2+35

RtABC中,AC2+BC2AB2,

即(2+x2+x+3252

解得:x1,x=﹣6(不合題意舍去),

SABC ×3×46,S陰影×2×1×22

∴針尖落在陰影域內(nèi)的概率=,

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小文同學統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法錯誤的是(  )

A.這棟居民樓共有居民125

B.每周使用手機支付次數(shù)為2835次的人數(shù)最多

C.有的人每周使用手機支付的次數(shù)在3542

D.每周使用手機支付不超過21次的有15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的方程

(1)求證:m取任何值時,方程總有實根.

(2)若二次函數(shù)的圖像關于y軸對稱.

a、求二次函數(shù)的解析式

b、已知一次函數(shù),證明:在實數(shù)范圍內(nèi),對于同一x值,這兩個函數(shù)所對應的函數(shù)值均成立.

(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應的函數(shù)值均成立,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位運動員在相同條件下各射擊次,成績?nèi)缦?/span>: :; :根據(jù)上述信息,下列結(jié)論錯誤的是(

A.甲、乙的眾數(shù)分別是B.甲、乙的中位數(shù)分別是

C.乙的成績比較穩(wěn)定D.甲、乙的平均數(shù)分別是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的對角線交于點是直線上任意一點(異于點),過點作平行于 的直線交直線于點,交直線于點

1)當點在線段上時,如圖 ①,易證: (不用證明);

2)當點在線段的延長線上時,如圖 ;當點在線段的延長線上時,如圖 ③,線段之間又有怎樣的數(shù)量關系? 請寫出你的猜想,并選擇其中一種情況加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了預測本校九年級男生畢業(yè)體育測試達標情況,隨機抽取該年級部分男生進行了一次測試(滿分50分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:類(),類(),類(),類()繪制出如圖所示的不完整條形統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

成績等級

人數(shù)

所占百分比

類(

10

類(

22

類(

類(

3

1______,________________;

2)補全條形統(tǒng)計圖;

3)若該校九年級男生有600名,類為測試成績不達標,請估計該校九年級男生畢業(yè)體育測試成績能達標的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上一點,點是半徑上一動點(不與,重合),過點作射線,分別交弦,兩點,在射線上取點,使

1)求證:的切線;

2)當點的中點時,

①若,判斷以,,為頂點的四邊形是什么特殊四邊形,并說明理由;

②若,且,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC4P是△ABC的高CD上一個動點,以B點為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。

A.2-2B.42C.2D.-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y的圖象經(jīng)過第一象限內(nèi)的一點A(n4),過點AABx軸于點B,且△AOB的面積為2

(1)mn的值;

(2)若一次函數(shù)ykx+2的圖象經(jīng)過點A,并且與x軸相交于點C,求線段AC的長.

查看答案和解析>>

同步練習冊答案