【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為(-2,4)、(-2,0)、(-4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1.
(2)平移△ABC,使點(diǎn)A移動到點(diǎn)A2(0,2),畫出平移后的△A2B2C2并寫出點(diǎn)B2、C2的坐標(biāo).
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2與 成中心對稱,其對稱中心的坐標(biāo)為 .
【答案】(1)(2)平移后的△A2B2C2如圖所示點(diǎn)B2、C2的坐標(biāo)分別為(0,-2),(-2,-1)(3)△A1B1C1;(1,-1)
【解析】解:(1)△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1如圖所示:
(2)平移后的△A2B2C2如圖所示:
點(diǎn)B2、C2的坐標(biāo)分別為(0,-2),(-2,-1)。
(3)△A1B1C1;(1,-1)。
(1)根據(jù)中心對稱的性質(zhì),作出A、B、C三點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)A1、B1、C1,連接即可。
(2)根據(jù)平移的性質(zhì),點(diǎn)A(-2,4)→A2(0,2),橫坐標(biāo)加2,縱坐標(biāo)減2,所以將B(-2,0)、C(-4,1)橫坐標(biāo)加2,縱坐標(biāo)減2得到B2(0,-2)、C2(-2,-1),連接即可。
(3)如圖所示。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請在網(wǎng)格中進(jìn)行下列操作:
(1)在圖中確定該圓弧所在圓的圓心D點(diǎn)的位置,并寫出點(diǎn)D點(diǎn)坐標(biāo)為________.
(2)連接AD、CD,求⊙D的半徑及的長;
(3)有一點(diǎn)E(6,0),判斷點(diǎn)E與⊙D的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB=AC,MN垂直平分AB分別交AB、BC于M、M,如果△ACN是等腰三角形,那么∠B的大小是______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衣,平均每天可售出20件,每件襯衣盈利40元.為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衣降價1元,商場平均每天可多售出2件.
(1)若商場平均每天盈利1200元,每件襯衣應(yīng)降價多少元?
(2)若要使商場平均每天的盈利最多,每件襯衣應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4cm,BC=8cm,動點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿AB向點(diǎn)B運(yùn)動,動點(diǎn)Q從點(diǎn)B出發(fā),以2cm/s秒的速度沿BC向點(diǎn)C運(yùn)動.P、Q分別從A、B同時出發(fā),設(shè)運(yùn)動時間為t秒.(如圖1)
(1)用含t的代數(shù)式表示下列線段長度:
①PB=__________cm,②QB=_____cm,③CQ=_________cm.
(2)當(dāng)△PBQ的面積等于3時,求t的值.
(3) (如圖2),若E為邊CD中點(diǎn),連結(jié)EQ、AQ.當(dāng)以A、B、Q為頂點(diǎn)的三角形與△EQC相似時,直接寫出滿足條件的t的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與雙曲線交于、兩點(diǎn),且點(diǎn)的橫坐標(biāo)為4.
(1)若雙曲線上一點(diǎn)的縱坐標(biāo)為8,求的面積;
(2)過原點(diǎn)的另一條直線交雙曲線于,兩點(diǎn)(點(diǎn)在第一象限),若由點(diǎn),,,為頂點(diǎn)組成的四邊形面積為24,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC三個頂點(diǎn)的坐標(biāo)為:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1與△ABC關(guān)于y軸對稱,請寫出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫答案):A1 ;B1, ;C1 ;
(2)△ABC的面積為 ;
(3)在y軸上畫出點(diǎn)P,使PB+PC最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線y=相交于A(1,2)、B(m,-1)兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1)、A2(x2,y2)、A3(x3,y3)為雙曲線上的三點(diǎn),且x1<x2<0<x3,請直接寫出y1、y2、y3的大小關(guān)系式;
(3)觀察圖象,請直接寫出不等式k1x+b>的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com