如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C,P的坐標(biāo)分別為(0,2),(3,2),(2,3),(1,1).
(1)請?jiān)趫D中畫出△A′B′C′,使得△A′B′C′與△ABC關(guān)于點(diǎn)P成中心對稱;
(2)若一個二次函數(shù)的圖象經(jīng)過(1)中△A′B′C′的三個頂點(diǎn),求此二次函數(shù)的關(guān)系式.
(1)△A'B'C'如圖所示.(3分)

(2)由(1)知,點(diǎn)A',B',C'的坐標(biāo)分別為(2,0),(-1,0),(0,-1).
由二次函數(shù)圖象與y軸的交點(diǎn)C'的坐標(biāo)為(0,-1),
故可設(shè)所求二次函數(shù)關(guān)系式為y=ax2+bx-1.(5分)
將A'(2,0),B'(-1,0)的坐標(biāo)代入,
4a+2b-1=0
a-b-1=0
,
解得
a=
1
2
b=-
1
2

故所求二次函數(shù)關(guān)系式為y=
1
2
x2-
1
2
x-1
.(8分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=
1
2
x2+bx+c的圖象與x軸只有一個公共點(diǎn)M,與y軸的交點(diǎn)為A,過點(diǎn)A的直線y=x+c與x軸交于點(diǎn)N,與這個二次函數(shù)的圖象交于點(diǎn)B.
(1)求點(diǎn)A、B的坐標(biāo)(用含b、c的式子表示);
(2)當(dāng)S△BMN=4S△AMN時,求二次函數(shù)的解析式;
(3)在(2)的條件下,設(shè)點(diǎn)P為x軸上的一個動點(diǎn),那么是否存在這樣的點(diǎn)P,使得以P、A、M為頂點(diǎn)的三角形為等腰三角形?若存在,請寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PDAC,交BC于點(diǎn)D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動點(diǎn)P運(yùn)動到何處時,BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象過(1,-1)、(2,1)、(-1,1)三點(diǎn),求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:直線y=-2x+4交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)C為x軸上一點(diǎn),AC=1,且OC<OA.拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A、B、C.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)D的坐標(biāo)為(-3,0),點(diǎn)P為線段AB上的一點(diǎn),當(dāng)銳角∠PDO的正切值是
1
2
時,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,該拋物線上的一點(diǎn)E在x軸下方,當(dāng)△ADE的面積等與四邊形APCE的面積時,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某幢建筑物,從10m高的窗口A,用水管向外噴水,噴出的水流呈拋物線狀(拋物線所在的平面與墻面垂直,如圖,如果拋物線的最高點(diǎn)M離墻1m,離地面
40
3
m,則水流落地點(diǎn)B離墻的距離OB是( 。
A.2mB.3mC.4mD.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,AB=12mm,BC=24mm,動點(diǎn)P以2mm/s的速度從A向B移動,(不與B重合),動點(diǎn)Q以4mm/s的速度從B向C移動,(不與C重合),若P、Q同時出發(fā),試問經(jīng)過幾秒后,四邊形APQC的面積最?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,半圓O的直徑AB=4,與半圓O內(nèi)切的動圓O1與AB切于點(diǎn)M,設(shè)⊙O1的半徑為y,AM的長為x,則y關(guān)于x的函數(shù)關(guān)系式是______(要求寫出自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=a(x-2)2-1圖象的頂點(diǎn)為P,與x軸交點(diǎn)為A、B,與y軸交點(diǎn)為C,連接BP并延長交y軸于點(diǎn)D.
(1)寫出點(diǎn)P的坐標(biāo);
(2)連接AP,如果△APB為等腰直角三角形,求a的值及點(diǎn)C、D的坐標(biāo);
(3)在(2)的條件下,連接BC、AC、AD,點(diǎn)E(0,b)在線段CD(端點(diǎn)C、D除外)上,將△BCD繞點(diǎn)E逆時針方向旋轉(zhuǎn)90°,得到一個新三角形.設(shè)該三角形與△ACD重疊部分的面積為S,根據(jù)不同情況,分別用含b的代數(shù)式表示S,選擇其中一種情況給出解答過程,其它情況直接寫出結(jié)果;判斷當(dāng)b為何值時,重疊部分的面積最大寫出最大值.

查看答案和解析>>

同步練習(xí)冊答案