【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過(guò)70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方30 m,過(guò)了2 s,測(cè)得小汽車與車速檢測(cè)儀間距離為50 m,這輛小汽車超速了嗎?

【答案】由題意得AC="30m " AB=50m

∵∠ACB=90°

∴BC=

小車行駛速度為40÷2=20/

即為20×3600=72千米/小時(shí)

∵72千米/小時(shí)>70千米/小時(shí)

這輛小車超速了。

【解析】

(1)由題意知,△ABC為直角三角形,且AB是斜邊,已知AB,AC根據(jù)勾股定理可以求BC;

(2)根據(jù)BC的長(zhǎng)度和時(shí)間可以求小汽車在BC路程中的速度,若速度大于70千米/時(shí),則小汽車超速;若速度小于70千米/時(shí),則小汽車沒有超速.

解:(1)由題意知,AB=130米,AC=50米,

且在Rt△ABC中,AB是斜邊,

根據(jù)勾股定理AB2=BC2+AC2,

可以求得:BC=120=0.12千米,

(2)∵6=小時(shí),

速度為=72千米/小時(shí),

故該小汽車超速.

答:該小汽車超速了,平均速度大于70千米/小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),其中B點(diǎn)坐標(biāo)為(4,0),直線DE是拋物線的對(duì)稱軸,且與x軸交于點(diǎn)E,CD⊥DE于D,現(xiàn)有下列結(jié)論: ①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4
下列選項(xiàng)中選出的結(jié)論完全正確的是(

A.①②③
B.①②④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,折疊長(zhǎng)方形一邊AD,點(diǎn)D落在BC邊的點(diǎn)F處, 已知BC=10厘米,AB=8厘米,求FCEF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市霧霾天氣趨于嚴(yán)重,甲商場(chǎng)根據(jù)民眾健康需要,代理銷售每臺(tái)進(jìn)價(jià)分別為600元、560

元的 A、B 兩種型號(hào)的空氣凈化器,如表是近兩周的銷售情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=

售收入進(jìn)貨成本)

銷售時(shí)段

銷售數(shù)量

銷售收入

(元)

A種型號(hào)

(臺(tái))

B種型號(hào)

(臺(tái))

第一周

3

2

3960

第二周

5

4

7120

(1)求 A,B 兩種型號(hào)的空氣凈化器的銷售單價(jià);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的空氣凈化器共30臺(tái),其中B型凈化器的進(jìn)貨量不超過(guò)A型的2.設(shè)購(gòu)進(jìn)A型空氣凈化器為x臺(tái),這30臺(tái)空氣凈化器的銷售總利潤(rùn)為y.

①請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系式;

②該商店購(gòu)進(jìn)A型、B型凈化器各多少臺(tái),才能使銷售總利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐山質(zhì)量監(jiān)督局從某食品廠生產(chǎn)的袋裝食品中抽出樣品20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),把超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:

與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克)

﹣6

﹣2

0

1

3

4

袋數(shù)

1

4

3

4

5

3

1)若每袋食品的標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的20袋食品的總質(zhì)量是多少克?

2)若該種食品的合格標(biāo)準(zhǔn)為450±5克,求該種食品抽樣檢測(cè)的合格率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中顯示了10名同學(xué)平均每周用于閱讀課外書的時(shí)間和用于看電視的時(shí)間(單位:小時(shí))。

(1)用有序?qū)崝?shù)對(duì)表示圖中各點(diǎn)。

(2)圖中有一個(gè)點(diǎn)位于方格的對(duì)角線上,這表示什么意思?

(3)圖中方格紙的對(duì)角線的左上方的點(diǎn)有什么共同的特點(diǎn)?它右下方的點(diǎn)呢?

(4)估計(jì)一下你每周用于閱讀課外書的時(shí)間和用于看電視的時(shí)間,在圖上描出來(lái),這個(gè)點(diǎn)位于什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(0,1),且過(guò)點(diǎn)(﹣1, ),直線y=kx+2與y軸相交于點(diǎn)P,與二次函數(shù)圖象交于不同的兩點(diǎn)A(x1 , y1),B(x2 , y2). (注:在解題過(guò)程中,你也可以閱讀后面的材料)
附:閱讀材料
任何一個(gè)一元二次方程的根與系數(shù)的關(guān)系為:兩根的和等于一次項(xiàng)系數(shù)與二次項(xiàng)系數(shù)的比的相反數(shù),兩根的積等于常數(shù)項(xiàng)與二次項(xiàng)系數(shù)的比.
即:設(shè)一元二次方程ax2+bx+c=0的兩根為x1 , x2 ,
則:x1+x2=﹣ ,x1x2=
能靈活運(yùn)用這種關(guān)系,有時(shí)可以使解題更為簡(jiǎn)單.
例:不解方程,求方程x2﹣3x=15兩根的和與積.
解:原方程變?yōu)椋簒2﹣3x﹣15=0
∵一元二次方程的根與系數(shù)有關(guān)系:x1+x2=﹣ ,x1x2=
∴原方程兩根之和=﹣ =3,兩根之積= =﹣15.

(1)求該二次函數(shù)的解析式.
(2)對(duì)(1)中的二次函數(shù),當(dāng)自變量x取值范圍在﹣1<x<3時(shí),請(qǐng)寫出其函數(shù)值y的取值范圍;(不必說(shuō)明理由)
(3)求證:在此二次函數(shù)圖象下方的y軸上,必存在定點(diǎn)G,使△ABG的內(nèi)切圓的圓心落在y軸上,并求△GAB面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案