【題目】我們規(guī)定:將一個平面圖形分成面積相等的兩部分的直線叫做該平面圖形的“面線”,“面線”被這個平面圖形截得的線段叫做該圖形的“面徑”(例如圓的直徑就是它的“面徑”).已知等邊三角形的邊長為4,則它的“面徑”長x的取值范圍是 _.
【答案】2(或介于2和2之間的任意兩個實數(shù)).
【解析】
試題分析:本題考查了等邊三角形的性質(zhì),讀懂題意,弄明白面徑的定義,并準(zhǔn)確判斷出等邊三角形的最短與最長的面徑是解題的關(guān)鍵.根據(jù)等邊三角形的性質(zhì),
(1)最長的面徑是等邊三角形的高線;
(2)最短的面徑平行于三角形一邊,最長的面徑為等邊三角形的高,然后根據(jù)相似三角形面積的比等于相似比的平方求出最短面徑.
如圖,
(1)等邊三角形的高AD是最長的面徑,
AD=×4=2;
(2)當(dāng)EF∥BC時,EF為最短面徑,
此時,()2=,
即=,
解得EF=2.
所以,它的面徑長可以是2(或介于2和2之間的任意兩個實數(shù)).
故答案為2(或介于2和2之間的任意兩個實數(shù)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某漁船在海面上朝正東方向勻速航行,在A處觀測到燈塔M在北偏東60°方向上,航行半小時后到達B處,此時觀測到燈塔M在北偏東30°方向上,那么該船繼續(xù)航行____________分鐘可使?jié)O船到達離燈塔距離最近的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P在四象限,且點P到x軸的距離為3,點P到y(tǒng)軸的距離為2,則點P的坐標(biāo)為( )
A.(﹣3,﹣2)
B.(3,﹣2)
C.(2,3)
D.(2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,AB=BC, BO是AC邊上的中線,點P,D分別在AO和BC上,PB=PD,DE⊥AC于點E,
(1)求證:△BPO≌△PDE.
(2)若PB平分∠ABO,其余條件不變.求證:AP=CD.
(先將圖形補充完整,然后再證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長都是8,寬都是2.那么△DCB的面積是否存在最大值或最小值?如果存在,請求出來;如果不存在,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每個正方形從第三象限的頂點開始,按順時針方向順序,依次記為A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)正方形的中心均在坐標(biāo)原點O,各邊均與x軸或y軸平行,若它們的邊長依次是2,4,6,…,則頂點A2016的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為: ;
(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.
(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com