【題目】如圖,射線OM上有三點(diǎn)A,B,C,滿足OA=20cm,AB=60cm,BC=10cm,動(dòng)點(diǎn)P從O點(diǎn)出發(fā)沿OM方向以每秒1cm的速度勻速運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CO上向點(diǎn)O勻速運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)O時(shí),立即停止運(yùn)動(dòng)),點(diǎn)P,Q同時(shí)出發(fā).
(1)當(dāng)點(diǎn)P與點(diǎn)Q都同時(shí)運(yùn)動(dòng)到線段AB的中點(diǎn)時(shí),求點(diǎn)Q的運(yùn)動(dòng)速度;
(2)若點(diǎn)Q運(yùn)動(dòng)速度為每秒3cm時(shí),經(jīng)過多少時(shí)間P,Q兩點(diǎn)相距70cm;
(3)當(dāng)PA=2PB時(shí),點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB的三等分,求點(diǎn)Q的速度.
【答案】(1)x=0.8cm/s;
(2)經(jīng)過5秒和70秒的P、Q兩點(diǎn)相距70cm;
(3)點(diǎn)Q的運(yùn)動(dòng)速度為0.5cm/s或cm/s.
【解析】
試題(1)設(shè)點(diǎn)的運(yùn)動(dòng)速度為 根據(jù)題意列出方程,求出即可;
(2)原本之間距離大于70cm,所以要分兩種情況,第一相距70cm跟相遇后兩者相距70cm,根據(jù)路程=速度×時(shí)間,即可求得,不過第二次相距70cm時(shí),點(diǎn)早已到達(dá)點(diǎn)停止運(yùn)動(dòng);
(3)分兩種情況,一種在線段內(nèi),一種在線段的延長(zhǎng)線上,根據(jù)速度=路程÷時(shí)間,即可求得點(diǎn)的速度.
試題解析:(1)設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為xcm/s,根據(jù)題意,得
即
解得x=0.8cm/s.
(2)∵OA+AB+BC=90cm>70cm,
∴分兩種情況,
①Q在P的右側(cè),
經(jīng)過時(shí)間為
②Q在P的左側(cè),
∵點(diǎn)Q運(yùn)動(dòng)到點(diǎn)O時(shí),立即停止運(yùn)動(dòng),
∴Q運(yùn)動(dòng)的時(shí)間為
兩者相距70cm時(shí)運(yùn)動(dòng)的時(shí)間為
綜合①②得知,經(jīng)過5秒和70秒的P、Q兩點(diǎn)相距70cm.
(3)PA=2PB,分兩種情況,
①當(dāng)點(diǎn)P在A. B兩點(diǎn)之間時(shí),
∵PA=2PB,
此時(shí)運(yùn)動(dòng)的時(shí)間為
∵點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB的三等分,
或
點(diǎn)Q的運(yùn)動(dòng)速度為0.5cm/s或cm/s.
②當(dāng)點(diǎn)P在線段AB的延長(zhǎng)線上時(shí),
∵PA=2PB,
∴PA=2AB=120cm,
此時(shí)運(yùn)動(dòng)的時(shí)間為
∵點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB的三等分,
或
點(diǎn)Q的運(yùn)動(dòng)速度為cm/s或cm/s.
綜合①②得知,當(dāng)點(diǎn)P在A. B兩點(diǎn)之間時(shí),點(diǎn)Q的運(yùn)動(dòng)速度為0.5cm/s或cm/s,;當(dāng)點(diǎn)P在線段AB的延長(zhǎng)線上時(shí),點(diǎn)Q的運(yùn)動(dòng)速度為cm/s或cm/s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中①∠A∶∠B∶∠C=1∶1∶2,②∠A +∠B=∠C,③∠B =90°-∠A,④∠A=∠B=∠C,⑤中,能確定△ABC是直角三角形的條件有_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)原計(jì)劃加工一批校服,現(xiàn)有甲、乙兩個(gè)工廠加工這批校服,已知甲工廠每天能加工這種校服16件,乙工廠每天加工這種校服24件,且單獨(dú)加工這批校服甲廠比乙廠要多用20天
(1)求這批校服共有多少件?
(2)為了盡快完成這批校服,若先由甲、乙兩工廠按原速度合作一段時(shí)間后,甲工廠停工,而乙工廠每天的速度提高25%,乙工廠單獨(dú)完成剩下的部分,且乙工廠全部工作時(shí)間是甲工廠工作時(shí)間的2倍還多4天,求乙工廠加工多少天
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3…和B1,B2,B3,…分別在直線y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果點(diǎn)A1(1,1),那么點(diǎn)A2019的縱坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號(hào)召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖所示.
大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計(jì)表
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請(qǐng)根據(jù)調(diào)查的信息
(1)活動(dòng)啟動(dòng)之初學(xué)生“一周詩詞誦背數(shù)量”的中位數(shù)為 ;
(2)估計(jì)大賽后一個(gè)月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,從兩個(gè)不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評(píng)價(jià)該校經(jīng)典詩詞誦背系列活動(dòng)的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶商家計(jì)劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實(shí)際每天的銷售量與計(jì)劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計(jì)劃量的差值 | +4 | -3 | -5 | +14 | -8 | +21 | -6 |
(1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。
(3)該店實(shí)行每日計(jì)件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過部分每輛另獎(jiǎng)15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點(diǎn)A落在BC 邊上的點(diǎn)D處,EF為折痕,若AE=2,則的值為_____________.
【答案】
【解析】分析:過點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得, ;
設(shè)AF=DF=x,則FG= ,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值
詳解:
如圖所示,過點(diǎn)D作DGAB于點(diǎn)G.
根據(jù)折疊性質(zhì),可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中, , ;
設(shè)AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中, ,
即=,
解得,
∴==.
故答案為: .
點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識(shí)來解決問題.
【題型】填空題
【結(jié)束】
18
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡(jiǎn)稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.
(1)兩次抽得紙牌均為紅桃的概率;(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請(qǐng)問甲選擇哪種方案勝率更高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(a ,2)是直線y=x上一點(diǎn),以A為圓心,2為半徑作⊙A,若P(x,y)是第一象限內(nèi)⊙A上任意一點(diǎn),則的最小值為( )
A. 1 B. C. —1 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com