【題目】在平面直角坐標(biāo)系中,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn),直線y=kx-3(k>0),與坐標(biāo)軸圍成的三角形內(nèi)部(不包含邊界)有且只有三個(gè)整點(diǎn),則k的取值范圍是__________.
【答案】
【解析】
根據(jù)表達(dá)式判斷出圖象,通過圖象找出臨界點(diǎn),再進(jìn)行計(jì)算即可.
解:∵直線y=kx-3(k>0),
∴圖象一定經(jīng)過(0,-3),且從左至右是上升的趨勢,
如圖所示:
通過圖象可得,當(dāng)直線經(jīng)過(3,0)時(shí),求出表達(dá)式為y=x-3,此時(shí)直線恰好經(jīng)過整點(diǎn)(2,-1),(1,-2),與坐標(biāo)軸圍成的三角形內(nèi)部(不包含邊界)有1個(gè)整點(diǎn);當(dāng)直線經(jīng)過(3,-1)時(shí),求出表達(dá)式為y=x-3,此時(shí)與坐標(biāo)軸圍成的三角形內(nèi)部(不包含邊界)恰好有3個(gè)整點(diǎn),
∴當(dāng)時(shí),與坐標(biāo)軸圍成的三角形內(nèi)部(不包含邊界)有且只有三個(gè)整點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠BAD=90°,以點(diǎn)B為圓心,BC長為半徑畫弧,與射線AD相交于點(diǎn)E,連結(jié)BE,過C點(diǎn)作CF⊥BE,垂足為F.
(1)線段BF與圖中現(xiàn)有的哪一條線段相等?先將你猜想出的結(jié)論填寫在下面的橫線上,然后再加以證明.
結(jié)論:BF= ;
(2)若AB=6,AE=8,求點(diǎn)A到點(diǎn)C的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,在ABCD中,點(diǎn)E是AB中點(diǎn),連接DE并延長,交CB的延長線于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)如圖2,點(diǎn)G是邊BC上任意一點(diǎn)(點(diǎn)G不與點(diǎn)B、C重合),連接AG交DF于點(diǎn)H,連接HC,過點(diǎn)A作AK∥HC,交DF于點(diǎn)K.
①求證:HC=2AK;
②當(dāng)點(diǎn)G是邊BC中點(diǎn)時(shí),恰有HD=nHK(n為正整數(shù)),求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),連接交拋物線的對稱軸于點(diǎn),是拋物線的頂點(diǎn).
求此拋物線的解析式;
直接寫出點(diǎn)和點(diǎn)的坐標(biāo);
若點(diǎn)在第一象限內(nèi)的拋物線上,且,求點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一元二次方程,下列說法:①若,則方程必有一根為;②若是方程的一個(gè)根,則一定有成立;③若,則方程一定有兩個(gè)不相等實(shí)數(shù)根;其中正確結(jié)論有( )個(gè).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在要從甲、乙兩名學(xué)生中選擇一名學(xué)生去參加比賽,因甲乙兩人的5次測試總成績相同,所以根據(jù)他們的成績繪制了尚不完整的統(tǒng)計(jì)圖表進(jìn)行分析.
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
甲成績 | 90 | 70 | 80 | 100 | 60 |
乙成績 | 70 | 90 | 90 | a | 70 |
請同學(xué)們完成下列問題:
(1)a=________,=________;
(2)請?jiān)趫D中完成表示乙成績變化情況的折線:
(3)S2甲=200,請你計(jì)算乙的方差;
(4)可看出________將被選中參加比賽.(第1問和第4問答案可直接填寫在答題卡的橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-2,2)、AB⊥x軸于點(diǎn)B,AD⊥y軸于點(diǎn)D,C(-2,1)為AB的中點(diǎn),直線CD交x軸于點(diǎn)F.
(1)求直線CD的函數(shù)關(guān)系式;
(2)過點(diǎn)C作CE⊥DF且交x軸于點(diǎn)E,求證:∠ADC=∠EDC;
(3)求點(diǎn)E坐標(biāo);
(4)點(diǎn)P是直線CE上的一個(gè)動(dòng)點(diǎn),求PB+PF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是等邊三角形,點(diǎn)的坐標(biāo)是,點(diǎn)在第一象限,的平分線交軸于點(diǎn),把繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),使邊與重合,得到,連接.求:的長及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)D為y軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)P經(jīng)過點(diǎn)C時(shí),求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;
②如圖②,把長方形沿著OP折疊,點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).
(3)點(diǎn)P在運(yùn)動(dòng)過程中是否存在使△BDP為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com