【題目】在課題學(xué)習(xí)中,老師要求用長(zhǎng)為12厘米,寬為8厘米的長(zhǎng)方形紙片制作一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.三位同學(xué)分別以下列方式在長(zhǎng)方形紙片上截去兩角(圖中陰影部分),然后沿虛線折成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.

甲:如圖1,盒子底面的四邊形ABCD是正方形;

乙:如圖2,盒子底面的四邊形ABCD是正方形;

丙:如圖3,盒子底面的四邊形ABCD是長(zhǎng)方形,AB=2AD

將這三位同學(xué)所折成的無(wú)蓋長(zhǎng)方體的容積按從大到小的順序排列,正確的是

A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲

【答案】C

【解析】

分別將甲乙丙三位同學(xué)折成的無(wú)蓋長(zhǎng)方體的容積計(jì)算出來(lái),即可比較大小.

甲:長(zhǎng)方體的長(zhǎng)為5cm,寬為3 cm,高為3 cm,容積為

乙:長(zhǎng)方體的長(zhǎng)為10 cm,寬為2 cm,高為2 cm,容積為

丙:長(zhǎng)方體的長(zhǎng)為6 cm,寬為4 cm,高為2 cm,容積為

所以,丙>甲>乙

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(1,0)B(0,3)、C(2,4)、D(30),點(diǎn)Px軸上一點(diǎn),直線CP將四邊形ABCD的面積分成1:2的兩部分,則P點(diǎn)坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等邊三角形,DBC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與B,C重合)△ADF是以AD為邊的等邊三角形,過(guò)點(diǎn)FBC的平行線交射線AC于點(diǎn)E,連接BF

1)如圖1,求證:△AFB≌△ADC;

2)請(qǐng)判斷圖1中四邊形BCEF的形狀,并說(shuō)明理由;

3)若D點(diǎn)在BC 邊的延長(zhǎng)線上,如圖2,其它條件不變,請(qǐng)問(wèn)(2)中結(jié)論還成立嗎?如果成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有甲、乙兩臺(tái)機(jī)器加工同一種零件,已知一小時(shí)甲加工的零件數(shù)與一小時(shí)乙加工的零件數(shù)的和為36個(gè),甲加工80個(gè)零件與乙加工100個(gè)零件的所用時(shí)間相等.求甲、乙兩臺(tái)機(jī)器每小時(shí)分別加工零件多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,若BF=12,AB=10,則AE的長(zhǎng)為( 。

A. 13B. 14C. 15D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在精準(zhǔn)扶貧政策的扶持下,貧困戶老李今年試種的百香果獲得大豐收,共收獲2 000千克.扶貧小組幫助他將百香果按照品質(zhì)從高到低分成AB,CD,E五個(gè)等級(jí),并根據(jù)數(shù)據(jù)繪制了如下的扇形統(tǒng)計(jì)圖和頻數(shù)分布表:

請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:

1__________;____________________;

2)求扇形統(tǒng)計(jì)圖中“E”所對(duì)應(yīng)的圓心角的度數(shù);

3)為了幫助貧困戶老李銷售百香果,扶貧小組聯(lián)系了甲、乙兩位經(jīng)銷商.他們分別給出如下收購(gòu)方案:

甲:全部按5/千克收購(gòu);

乙:按等級(jí)收購(gòu):C等級(jí)單價(jià)為6.5/千克,每提高一個(gè)等級(jí)單價(jià)提高1/千克,剩下的D,E兩個(gè)等級(jí)單價(jià)均為2/千克.

請(qǐng)你通過(guò)計(jì)算,判斷哪個(gè)經(jīng)銷商的方案使老李盈利更多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=2x2bxc經(jīng)過(guò)點(diǎn)A(2,-1) .

(1)若拋物線的對(duì)稱軸為x=1,求b,c的值;

(2)求證:拋物線與x軸有兩個(gè)不同的交點(diǎn);

(3)設(shè)拋物線頂點(diǎn)為P,若O、AP三點(diǎn)共線(O為坐標(biāo)原點(diǎn)),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O.E,F(xiàn)AC上的兩點(diǎn),并且AE=CF,連接DE,BF.

(1)求證:DOE≌△BOF;

(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測(cè)量大樹(shù)CD高度的綜合實(shí)踐活動(dòng),如右圖,在點(diǎn)A處測(cè)得直立于地面的大樹(shù)頂端C的仰角為45°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹(shù)腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1∶2.4,那么大樹(shù)CD的高度約為多少?( )

A. 18米 B. 13米 C. 12米 D. 5米

查看答案和解析>>

同步練習(xí)冊(cè)答案