如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標(biāo)為(n,6),點C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標(biāo);
(3)在x軸上求點E,使△ACE為直角三角形.(直接寫出點E的坐標(biāo))
考點:
反比例函數(shù)綜合題.
專題:
綜合題.
分析:
(1)過點A作AD⊥x軸于D,根據(jù)A、C的坐標(biāo)求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把點的坐標(biāo)代入解析式即可求得反比例函數(shù)和一次函數(shù)解析式;
(2)求出反比例函數(shù)和一次函數(shù)的另外一個交點即可;
(3)分兩種情況:①AE⊥x軸,②EA⊥AC,分別寫出E的坐標(biāo)即可.
解答:
解:(1)過點A作AD⊥x軸于D,
∵C的坐標(biāo)為(﹣2,0),A的坐標(biāo)為(n,6),
∴AD=6,CD=n+2,
∵tan∠ACO=2,
∴==2,
解得:n=1,
故A(1,6),
∴m=1×6=6,
∴反比例函數(shù)表達式為:y=,
又∵點A、C在直線y=kx+b上,
∴,
解得:,
∴一次函數(shù)的表達式為:y=2x+4;
(2)由得: =2x+4,
解得:x=1或x=﹣3,
∵A(1,6),
∴B(﹣3,﹣2);
(3)分兩種情況:①當(dāng)AE⊥x軸時,
即點E與點D重合,
此時E1(1,0);
②當(dāng)EA⊥AC時,
此時△ADE∽△CDA,
則=,
DE==12,
又∵D的坐標(biāo)為(1,0),
∴E2(13,0).
點評:
本題考查了反比例函數(shù)的綜合題,涉及了點的坐標(biāo)的求法以及待定系數(shù)法求函數(shù)解析式的知識,主要考查學(xué)生的計算能力和觀察圖形的能力.
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com