【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作,與AC、DC分別交于點為CG的中點,連結DE、EH、DH、下列結論: ; ≌; ; 若,則其中結論正確的有
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】試題解析:①∵四邊形ABCD為正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG為等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正確;
②∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),故②正確;
③∵△EHF≌△DHC(已證),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故③正確;
④∵,
∴AE=2BE,
∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD為等腰直角三角形,
如圖,過H點作HM⊥CD于M,
設HM=x,則DM=5x,DH=x,CD=6x,
則S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④正確;
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小甲蟲從某點O出發(fā),在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程為負數(shù),爬過的各段路程依次為:(單位:厘米)
+4,6,8,+12,10,+11,3
(1)小甲蟲最后是否回到了出發(fā)點O呢?
(2)小甲蟲離開點O的最遠距離是多少厘米?
(3)在爬行過程中,如果每爬1厘米獎勵三粒芝麻,那么小甲蟲一共得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(+17)+(-12);
(2)10+(―)―6―(―0.25);
(3)()×48 ;
(4)|-5-4|-5×(-2)2-1÷(-)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為⊙O外一點,PA,PB分別切⊙O于A,B,CD切⊙O于點E,分別交PA,PB于點C,D.若PA=5,則△PCD的周長和∠COD分別為( 。
A. 5, (90°+∠P) B. 7,90°+ C. 10,90°-∠P D. 10,90°+∠P
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2014河南21題)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍.設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關于x的函數(shù)關系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下降元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,直線 y=﹣x+6 與 y 軸于點 A,與 x 軸交于點 D,直線 AB 交 x 軸于點 B,AOB 沿直線 AB 折疊,點 O 恰好落在直線 AD 上的點 C 處.
(1)求點 B 的坐標;
(2)如圖 2,直線 AB 上的兩點 F、G,DFG 是以 FG 為斜邊的等腰直角三角形,求點 G 的坐標;
(3)如圖 3,點 P 是直線 AB 上一點,點 Q 是直線 AD 上一點,且 P、Q 均在第四象限,點 E 是 x 軸上一點,若四邊形 PQDE 為菱形,求點 E 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的外接圓為⊙O,點P在劣弧 CD上(不與C點重合).
(1)求∠BPC的度數(shù);
(2)若⊙O的半徑為8,求正方形ABCD的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com